
de Medicina y Cirugía
REPERT MED CIR. 2025;34(2):153-161
160
8. Zhong H, Liu S, Wang Y, Xu D, Li M, Zhao Y, et al. Primary Sjögren’s
syndrome is associated with increased risk of malignancies besides
lymphoma: A systematic review and meta-analysis. Autoimmun
Rev. 2022;21(5):103084. doi: 10.1016/j.autrev.2022.103084.
9. Abbas AK, Lichtman AH, Pillai S, Baker DL, Baker A. Inmunología
Celular y Molecular. 10th ed. Barcelona: Elsevier; 2022.
10. Villamizar-Rivera N, Olaya N. Estudio de la clonalidad linfoide por
medio del análisis de reordenamientos del receptor de antígeno. Rev
Med Inst Mex Seguro Soc. 2015;53(1):56–65.
11. Tschumper RC, Hoelzinger DB, Walters DK, Davila JI, Osborne
CA, Jelinek DF. Stage-specic non-coding RNA expression
patterns during in vitro human B cell dierentiation into antibody
secreting plasma cells. Noncoding RNA. 2022;8(1):15. doi: 10.3390/
ncrna8010015.
12. Kang J, Kim H, Kim J, Choi S, Jung SY, Jang EJ, et al. Risk of
malignancy in Korean patients with primary Sjögren’s syndrome.
Int J Rheum Dis. 2020;23(9):1240–7. doi: 10.1111/1756-185X.13927.
13. Goulabchand R, Malafaye N, Jacot W, Witkowski Durand Viel P, Morel
J, Lukas C, et al. Cancer incidence in primary Sjögren’s syndrome:
Data from the French hospitalization database. Autoimmunity Rev.
2021;20(12):102987. doi: 10.1016/j.autrev.2021.102987.
14. Zhou Z, Liu H, Yang Y, Zhou J, Zhao L, Chen H, et al. The ve major
autoimmune diseases increase the risk of cancer: Epidemiological
data from a large‐scale cohort study in China. Cancer Commun.
2022;42(5):435–446. doi: 10.1002/cac2.12283.
15. Zhang JJ, Xie YX, Luo LL, Yang XT, Wang YX, Cao Y, et al. A
comparison of capillary electrophoresis and next-generation
sequencing in the detection of immunoglobulin heavy chain H
and light chain ‐ gene rearrangements in the diagnosis of classic
hodgkin’s lymphoma. Bioengineered. 2022;13(3):5868–79. doi:
10.1080/21655979.2022.2038901.
16. Di Rocco A, Petrucci L, Assanto GM, Martelli M, Pulsoni A.
Extranodal marginal zone lymphoma: Pathogenesis, diagnosis and
treatment. Cancers. 2022;14(7):1742. doi: 10.3390/cancers14071742.
17. Villamizar-Rivera N, Olaya N. Experiencia en el uso de protocolos
Biomed-2 para el estudio de reordenamientos de TCR e
inmunoglobulinas en proliferaciones linfoides en el Instituto
Nacional de Cancerología, Colombia. Biomédica. 2022;42(Sp. 1):64–
78. doi: 10.7705/biomedica.5940.
18. Han S, Masaki A, Sakamoto Y, Takino H, Murase T, Iida S, et al.
Improved clonality detection in Hodgkin lymphoma using a semi‐
nested modication of the BIOMED‐2 PCR assay for IGH and IGK
rearrangements: A paran‐embedded tissue study. Pathol Int.
2018;68(5):287–93. doi: 10.1111/pin.12660.
19. Sakamoto Y, Masaki A, Aoyama S, Han S, Saida K, Fujii K, et al.
Improved clonality detection in B‐cell lymphoma using a semi‐nested
modication of the BIOMED‐2 PCR assay for IGH rearrangement:
A paran‐embedded tissue study. Pathol Int. 2017;67(9):453–460.
doi: 10.1111/pin.12566.
20. Villamizar-Rivera N, Olaya N. Determinación de la clonalidad en
tejidos humanos. Iatreia. 2015;28(3):269–82. doi: 10.17533/udea.
iatreia.v28n3a05.
21. Kotrova M, Darzentas N, Pott C, Baldus CD, Brüggemann M. Immune
gene rearrangements: Unique signatures for tracing physiological
lymphocytes and leukemic cells. Genes. 2021;12(7):979. doi:
10.3390/genes12070979.
22. Villamizar-Rivera N, Olaya N. Estudio de la clonalidad linfoide por
medio del análisis de reordenamientos del receptor de antígeno. Rev
Med Inst Mex Seguro Soc. 2015;53(1):56–65.
23. Baizan-Edge A, Stubbs BA, Stubbington MJT, Bolland DJ, Tabbada
K, Andrews S, et al. IL-7R signaling activates widespread VH and
DH gene usage to drive antibody diversity in bone marrow B cells.
Cell Reports. 2021;36(2):109349. doi: 10.1016/j.celrep.2021.109349.
24. Mendoza H, Tormey CA, Rinder HM, Howe JG, Siddon AJ.
The utility and limitations of B- and T-cell gene rearrangement
studies in evaluating lymphoproliferative disorders. Pathology.
2021;53(2):157–65. doi: 10.1016/j.pathol.2020.09.024.
25. Scheijen B, Meijers RW, Rijntjes J, van der Klift MY, Möbs M,
Steinhilber J, et al. Next-generation sequencing of immunoglobulin
gene rearrangements for Clonality Assessment: A technical
feasibility study by Euroclonality-NGS. Leukemia. 2019;33(9):2227–
2240. doi: 10.1038/s41375-019-0508-7.
26. Villamizar-Rivera N, Olaya N. Experiencia en el uso de
protocolos biomed-2 para el estudio de reordenamientos de tcr
E inmunoglobulinas en proliferaciones linfoides en el Instituto
Nacional de cancerología, Colombia. Biomédica. 2022;42(Sp. 1):64–
78. doi: 10.7705/biomedica.5940.
27. van Bladel DAG, van den Brand M, Rijntjes J, Naga SP, Haacke
DLCM, Luijks JACW, et al. Clonality assessment and detection of
clonal diversity in classic Hodgkin lymphoma by next-generation
sequencing of immunoglobulin gene rearrangements. Modern
Pathology. 2022;35(6):757–766. doi: 10.1038/s41379-021-00983-8.
28. Boone E, Heezen KC, Groenen PJ, Langerak AW. PCR GeneScan
and heteroduplex analysis of rearranged immunoglobulin
or T-cell receptor genes for clonality diagnostics in suspect
lymphoproliferations. Methods in Molecular Biology. 2019;1956:77–
103. doi: 10.1007/978-1-4939-9151-8_4.
29. Liu X, He H, Li Y, Huang Y, Li G, Yu Q, et al. The application of
antigen receptor gene rearrangement of BIOMED-2 in the
pathologic diagnosis of 348 cases with non-Hodgkin Lymphoma
in a single institution in southwest of China. Pathol Res Pract.
2019;215(11):152615. doi: 10.1016/j.prp.2019.152615.
30. Moczko A, Dimitriou F, Kresbach H, Amarov B, Hoetzenecker
W, Pascolo S, et al. Sensitivity and specicity of T-cell receptor
PCR BIOMED-2 clonality analysis for the diagnosis of cutaneous
T-cell lymphoma. Eur J Dermatol. 2020;30(1):12–5. doi: 10.1684/
ejd.2020.3698.
31. Zhang Y, Yu D, Huang K, Huang C, Liu H, Sun X, et al. Evaluation of
the diagnostic value of immunoglobulin clonal gene rearrangements
in patients with parotid gland MALT lymphoma using
BIOMED-2 protocol. Oral Surg Oral Med Oral Pathol Oral Radiol.
2018;126(2):165–73. doi: 10.1016/j.oooo.2018.03.005.