de Medicina y Cirugía
236
REPERT MED CIR. 2024;33(3):230-237
26. Koohbanani NA, Jahanifar M, Tajadin NZ, Rajpoot N. NuClick:
A deep learning framework for interactive segmentation of
microscopy images [Internet]. arXiv [cs.CV]. 2020 [citado el 25 de
abril de 2023]. Disponible en: http://arxiv.org/abs/2005.14511
27. Ocampo P, Moreira A, Coudray N, Sakellaropoulos T, Narula N,
Snuderl M, et al. P1.09-32 classication and mutation prediction
from non-small cell lung cancer histopathology images using
deep learning. J Thorac Oncol. 2018;13(10):S562. http://dx.doi.
org/10.1016/j.jtho.2018.08.808.
28. Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH. Patch-
based convolutional neural network for whole slide tissue image
classication. Proc IEEE Comput Soc Conf Comput Vis Pattern
Recognit. 2016; 2016:2424–33. http://dx.doi.org/10.1109/
CVPR.2016.266
29. Qaiser T, Pugh M, Margielewska S, Hollows R, Murray P, Rajpoot
N. Digital tumor-collagen proximity signature predicts survival
in diuse large B-cell lymphoma. In: Digital Pathology. Cham:
Springer International Publishing; 2019. p. 163–71.
30. Mobadersany P, Youse S, Amgad M, Gutman DA, Barnholtz-Sloan
JS, Velázquez Vega JE, et al. Predicting cancer outcomes from
histology and genomics using convolutional networks. Proc Natl
Acad Sci U S A. 2018;115(13):E2970–9. http://dx.doi.org/10.1073/
pnas.1717139115
31. Kleppe A, Skrede O-J, De Raedt S, Liestøl K, Kerr DJ, Danielsen
HE. Designing deep learning studies in cancer diagnostics. Nat
Rev Cancer. 2021;21(3):199–211. http://dx.doi.org/10.1038/
s41568-020-00327-9
32. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M,
Harvey H, et al. Articial intelligence versus clinicians: systematic
review of design, reporting standards, and claims of deep learning
studies. BMJ. 2020;368:m689. http://dx.doi.org/10.1136/bmj.
m689
33. Collins GS, Moons KGM. Reporting of articial intelligence
prediction models. Lancet. 2019;393(10181):1577–9. http://
dx.doi.org/10.1016/s0140-6736(19)30037-6
34. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King
D. Key challenges for delivering clinical impact with articial
intelligence. BMC Med. 2019;17(1):195. http://dx.doi.org/10.1186/
s12916-019-1426-2
35. Mongan J, Moy L, Kahn CE Jr. Checklist for articial intelligence
in medical imaging (CLAIM): A guide for authors and reviewers.
Radiol Artif Intell. 2020;2(2): e200029. http://dx.doi.org/10.1148/
ryai.2020200029
36. Franklin MM, Schultz FA, Tafoya MA, Kerwin AA, Broehm CJ,
Fischer EG, et al. A deep learning convolutional neural network
can dierentiate between Helicobacter pylori gastritis and
autoimmune gastritis with results comparable to gastrointestinal
pathologists. Arch Pathol Lab Med. 2022;146(1):117–22. http://
dx.doi.org/10.5858/arpa.2020-0520-OA.
37. Sulyok M, Luibrand J, Strohäker J, Karacsonyi P, Frauenfeld
L, Makky A, et al. Implementing deep learning models for
the classication of Echinococcus multilocularis infection in
human liver tissue. Parasit Vectors. 2023;16(1):29. http://dx.doi.
org/10.1186/s13071-022-05640-w.
38. Hu R-S, Hesham AE-L, Zou Q. Machine learning and its
applications for protozoal pathogens and protozoal infectious
diseases. Front Cell Infect Microbiol. 2022;12:882995. http://
dx.doi.org/10.3389/fcimb.2022.882995.
39. Delgado-Ortet M, Molina A, Alférez S, Rodellar J, Merino A. A
deep learning approach for segmentation of red blood cell images
and malaria detection. Entropy (Basel). 2020;22(6):657. http://
dx.doi.org/10.3390/e22060657.
40. Huang CR, Chung PC, Sheu BS, Kuo HJ, Popper M. Helicobacter
Pylori-Related Gastric Histology Classication Using Support-
Vector-Machine-Based Feature Selection. IEEE Transactions
on Information Technology in Biomedicine. 2008;12(4):523-31.
http://dx.doi.org/10.1109/TITB.2007.913128
41. Mohan BP, Khan SR, Kassab LL, Ponnada S, Mohy-Ud-Din N,
Chandan S, et al. Convolutional neural networks in the computer-
aided diagnosis of Helicobacter pylori infection and non-causal
comparison to physician endoscopists: a systematic review with
meta-analysis. Ann Gastroenterol. 2021;34(1):20-5. http://dx.doi.
org/10.20524/aog.2020.0542
42. Shi W, Georgiou P, Akram A, Proute MC, Serhiyenia T, Kerolos
ME, et al. Diagnostic Pitfalls of Digital Microscopy Versus Light
Microscopy in Gastrointestinal Pathology: A Systematic Review.
Cureus. 2021;13(8):e17116. http://dx.doi.org/10.7759/cureus.17116
43. Ford AC, Yuan Y, Forman D, Hunt R, Moayyedi P. Helicobacter
pylori eradication for the prevention of gastric neoplasia.
Cochrane Database Syst Rev. 2020;7:CD005583. http://dx.doi.
org/10.1002/14651858.CD005583.pub3
44. Klein S, Gildenblat J, Ihle MA, Merkelbach-Bruse S, Noh K-W,
Peifer M, et al. Deep learning for sensitive detection of Helicobacter
Pylori in gastric biopsies. BMC Gastroenterol. 2020;20(1):417.
http://dx.doi.org/10.1186/s12876-020-01494-7
45. Gonçalves WGE, Santos MHPD, Brito LM, Palheta HGA,
Lobato FMF, Demachki S, et al. DeepHP: A new gastric mucosa
histopathology dataset for Helicobacter pylori infection diagnosis.
Int J Mol Sci. 2022;23(23):14581. http://dx.doi.org/10.3390/
ijms232314581
46. Gonçalves WGE, Dos Santos MH de P, Lobato FMF, Ribeiro-Dos-
Santos Â, de Araújo GS. Deep learning in gastric tissue diseases:
a systematic review. BMJ Open Gastroenterol. 2020;7(1): e000371.
http://dx.doi.org/10.1136/bmjgast-2019-000371
47. Franklin MM, Schultz FA, Tafoya MA, Kerwin AA, Broehm CJ,
Fischer EG, et al. A deep learning convolutional neural network
can dierentiate between Helicobacter pylori gastritis and
autoimmune gastritis with results comparable to gastrointestinal
pathologists. Arch Pathol Lab Med. 2022;146(1):117–22. http://
dx.doi.org/10.5858/arpa.2020-0520-OA
48. Xiong Y, Ba X, Hou A, Zhang K, Chen L, Li T. Automatic detection
of mycobacterium tuberculosis using articial intelligence. J
Thorac Dis. 2018;10(3):1936-1940. http://dx.doi.org/10.21037/
jtd.2018.01.91