Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Obesidad y monocitos macrófagos en el tejido adiposo

Adipose tissue monocytes and macrophages in obesity




Sección
Artículo de revisión

Cómo citar
Mejia-Montilla, J. ., Reyna-Villasmil, N. ., Fernández-Ramírez, A. ., & Reyna Villasmil, E. (2024). Obesidad y monocitos macrófagos en el tejido adiposo. Revista Repertorio De Medicina Y Cirugía, 33(1), 3-13. https://doi.org/10.31260/RepertMedCir.01217372.1242

Dimensions
PlumX
Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Jorly Mejia-Montilla

    Nadia Reyna-Villasmil

      Andreina Fernández-Ramírez

        Eduardo Reyna Villasmil


          Introducción: el tejido adiposo ha sido objeto de estudio en las últimas décadas y existen nuevos conceptos de su compleja biología. Se conoce que la obesidad está asociada con un estado inflamatorio crónico de bajo grado tanto local como sistémico y parece desempeñar un papel clave en las consecuencias del aumento en diferentes comorbilidades metabólicas y vasculares. Discusión: de los diversos tipos de células inmunes que contribuyen a la inflamación inducida por la obesidad, los monocitos/macrófagos en el tejido adiposo juegan un papel central. Las modificaciones estructurales y fenotípicas de ambas células pueden contribuir no solo a alteraciones inflamatorias y metabólicas, sino también ayudar a mantener la homeostasis del tejido adiposo en respuesta al aumento de la grasa corporal. Los macrófagos son células efectoras esenciales en la organización de la inflamación, ya que se cree que promueven la progresión de la obesidad y los trastornos relacionados. No está completamente establecido si dichas células ejercen un papel beneficioso o nocivo en el tejido adiposo. En cualquier caso, su presencia modifica la biología de las células adiposas especializadas. Conclusiones: en esta revisión se analiza el conocimiento sobre la contribución de los monocitos/macrófagos dentro del tejido adiposo en el desarrollo y mantenimiento de la obesidad y las complicaciones potenciales relacionadas.


          Visitas del artículo 1634 | Visitas PDF 895


          Descargas

          Los datos de descarga todavía no están disponibles.
          1. Antonelli M, Kushner I. It's time to redefine inflammation. FASEB J. 2017;31(5):1787-1791. https://doi.org/10.1096/fj.201601326R.
          2. Kochumon S, Al Madhoun A, Al-Rashed F, Thomas R, Sindhu S, Al- Ozairi E, Al-Mulla F, Ahmad R. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci Rep. 2020;10(1):16364. https://doi.org/10.1038/s41598-020-73347-y.
          3. Klein-Wieringa IR, Andersen SN, Kwekkeboom JC, Giera M, de Lange-Brokaar BJ, van Osch GJ, Zuurmond AM, Stojanovic- Susulic V, Nelissen RG, Pijl H, Huizinga TW, Kloppenburg M, Toes RE, Ioan-Facsinay A. Adipocytes modulate the phenotype of human macrophages through secreted lipids. J Immunol. 2013;191(3):1356-63. https://doi.org/10.4049/jimmunol.1203074.
          4. Yvan-Charvet L, Ivanov S. Metabolic Reprogramming of Macrophages in Atherosclerosis: Is It All about Cholesterol? J Lipid Atheroscler. 2020;9(2):231-242. https://doi.org/10.12997/ jla.2020.9.2.231.
          5. Johnson JL, Ramadass M, He J, Brown SJ, Zhang J, Abgaryan L, Biris N, Gavathiotis E, Rosen H, Catz SD. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation: Druggability of the small GTPase Rab27a. J Biol Chem. 2016;291(50):25965-25982. https://doi.org/10.1074/jbc.M116.741884.
          6. Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, Arock M, Guerre-Millo M, Clément K. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 2012;97(9):E1677-85. https:// doi.org/10.1210/jc.2012-1532.
          7. Antony A, Lian Z, Perrard XD, Perrard J, Liu H, Cox AR, Saha P, Hennighausen L, Hartig SM, Ballantyne CM, Wu H. Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes. 2021;70(3):720-732. https://doi.org/10.2337/db20-0634.
          8. Ryan VH, German AJ, Wood IS, Hunter L, Morris P, Trayhurn P. Adipokine expression and secretion by canine adipocytes: stimulation of inflammatory adipokine production by LPS and TNFalpha. Pflugers Arch. 2010;460(3):603-16. https://doi. org/10.1007/s00424-010-0845-x.
          9. Yarur AJ, Quintero MA, Jain A, Czul F, Barkin JS, Abreu MT.Serum Amyloid A as a Surrogate Marker for Mucosal and Histologic Inflammation in Patients with Crohn's Disease. Inflamm Bowel Dis. 2017;23(1):158-164. https://doi.org/10.1097/ MIB.0000000000000991.
          10. Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O'Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Invest. 2016;126(1):266-81. https://doi. org/10.1172/JCI83475.
          11. Eguchi A, Feldstein AE. Adipocyte cell death, fatty liver disease and associated metabolic disorders. Dig Dis. 2014;32(5):579-85. https://doi.org/10.1159/000360509.
          12. Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211-5. https://doi. org/10.1016/j.atherosclerosis.2015.11.015.
          13. Davis JE, Braucher DR, Walker-Daniels J, Spurlock ME. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem. 2011;22(2):136-41. https://doi. org/10.1016/j.jnutbio.2009.12.008.
          14. Rizk NM, Fadel A, AlShammari W, Younes N, Bashah M. The Immunophenotyping Changes of Peripheral CD4+ T Lymphocytes and Inflammatory Markers of Class III Obesity Subjects After Laparoscopic Gastric Sleeve Surgery - A Follow-Up Study. J Inflamm Res. 2021;14:1743-1757. https://doi.org/10.2147/JIR. S282189.
          15. Wu G, Lee YY, Gulla EM, Potter A, Kitzmiller J, Ruben MD, Salomonis N, Whitsett JA, Francey LJ, Hogenesch JB, Smith DF. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. Elife. 2021;10:e63003. https://doi.org/10.7554/eLife.63003.
          16. Gaber T, Strehl C, Buttgereit F. Metabolic regulation of inflammation. Nat Rev Rheumatol. 2017;13(5):267-279. https://doi.org/10.1038/nrrheum.2017.37.
          17. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826-37. https://doi. org/10.1038/nri2873.
          18. Rio MC, Dali-Youcef N, Tomasetto C. Local adipocyte cancer cell paracrine loop: can "sick fat" be more detrimental? Horm Mol Biol Clin Investig. 2015;21(1):43-56. https://doi.org/10.1515/ hmbci-2014-0044.
          19. Kalafati M, Lenz M, Ertaylan G, Arts ICW, Evelo CT, van Greevenbroek MMJ, Blaak EE, Adriaens M, Kutmon M. Assessing the Contribution of Relative Macrophage Frequencies to Subcutaneous Adipose Tissue. Front Nutr. 2021;8:675935. https://doi.org/10.3389/fnut.2021.675935.
          20. Kurotaki D, Sasaki H, Tamura T. Transcriptional control of monocyte and macrophage development. Int Immunol. 2017;29(3):97-107. https://doi.org/10.1093/intimm/dxx016.
          21. Jin C, Henao-Mejia J, Flavell RA. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 2013;17(6):873-882. https://doi.org/10.1016/j.cmet.2013.05.011.
          22. Tapp LD, Shantsila E, Wrigley BJ, Pamukcu B, Lip GY. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J Thromb Haemost. 2012;10(7):1231-41. https://doi.org/10.1111/ j.1538-7836.2011.04603.x.
          23. Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM, Hiscott JB, Nikolich-Zugich J, Haddad EK. Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. J Immunol. 2017;199(4):1405-1417. https://doi. org/10.4049/jimmunol.1700148.
          24. Phillips CL, Grayson BE. The immune remodel: Weight loss-mediated inflammatory changes to obesity. Exp Biol Med (Maywood). 2020;245(2):109-121. https://doi.org/10.1177/1535370219900185.
          25. Rogacev KS, Ulrich C, Blömer L, Hornof F, Oster K, Ziegelin M, Cremers B, Grenner Y, Geisel J, Schlitt A, Köhler H, Fliser D, Girndt M, Heine GH. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J. 2010;31(3):369-76. https://doi. org/10.1093/eurheartj/ehp308.
          26. He L, He M, Lv X, Pu D, Su P, Liu Z. NF-kappaB binding activity and pro-inflammatory cytokines expression correlate with body mass index but not glycosylated hemoglobin in Chinese population. Diabetes Res Clin Pract. 2010;90(1):73-80. https://doi. org/10.1016/j.diabres.2010.06.016.
          27. Bastarrachea RA, López-Alvarenga JC, Bolado-García VE, Téllez- Mendoza J, Laviada-Molina H, Comuzzie AG. Macrófagos, inflamación, tejido adiposo, obesidad y resistencia a la insulina. Gac Med Mex. 2007;143(6):505-12.
          28. Spite M, Hellmann J, Tang Y, Mathis SP, Kosuri M, Bhatnagar A, Jala VR, Haribabu B. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J Immunol. 2011;187(4):1942-9. https://doi.org/10.4049/jimmunol.1100196.
          29. Crane MJ, Hokeness-Antonelli KL, Salazar-Mather TP. Regulation of inflammatory monocyte/macrophage recruitment from the bone marrow during murine cytomegalovirus infection: role for type I interferons in localized induction of CCR2 ligands. J Immunol.2009;183(4):2810-7. https://doi.org/10.4049/jimmunol.0900205.
          30. Fink LN, Costford SR, Lee YS, Jensen TE, Bilan PJ, Oberbach A, Blüher M, Olefsky JM, Sams A, Klip A. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity (Silver Spring). 2014;22(3):747-57. https://doi.org/10.1002/oby.20615.
          31. Yu R, Kim CS, Kwon BS, Kawada T. Mesenteric adipose tissue- derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring). 2006;14(8):1353-62. https://doi. org/10.1038/oby.2006.153.
          32. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, Ohnishi Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Nagai R, Kadowaki T. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281(36):26602-14. https:// doi.org/10.1074/jbc.M601284200.
          33. Kang JH, Goto T, Han IS, Kawada T, Kim YM, Yu R. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring). 2010;18(4):780-7. https://doi.org/10.1038/oby.2009.301.
          34. Dommel S, Blüher M. Does C-C Motif Chemokine Ligand 2 (CCL2) Link Obesity to a Pro-Inflammatory State? Int J Mol Sci.2021;22(3):1500. https://doi.org/10.3390/ijms22031500.
          35. Chen A, Mumick S, Zhang C, Lamb J, Dai H, Weingarth D, Mudgett J, Chen H, MacNeil DJ, Reitman ML, Qian S. Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res. 2005;13(8):1311-20. https://doi.org/10.1038/ oby.2005.159.
          36. Kirk EA, Sagawa ZK, McDonald TO, O'Brien KD, Heinecke JW. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes. 2008;57(5):1254-61. https://doi.org/10.2337/db07-1061.
          37. Nakatsuji H, Kishida K, Sekimoto R, Komura N, Kihara S, Funahashi T, Shimomura I. Accumulation of adiponectin in inflamed adipose tissues of obese mice. Metabolism. 2014;63(4):542-53. https://doi.org/10.1016/j.metabol.2013.12.012.
          38. Thomas AP, Dunn TN, Oort PJ, Grino M, Adams SH. Inflammatory phenotyping identifies CD11d as a gene markedly induced in white adipose tissue in obese rodents and women. J Nutr. 2011;141(6):1172-80. https://doi.org/10.3945/jn.110.127068.
          39. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw.2006;17(1):4-12.
          40. Surmi BK, Webb CD, Ristau AC, Hasty AH. Absence of macrophage inflammatory protein-1{alpha} does not impact macrophage accumulation in adipose tissue of diet-induced obese mice. Am J Physiol Endocrinol Metab. 2010;299(3):E437-45. https://doi. org/10.1152/ajpendo.00050.2010.
          41. Hara T, Nakayama Y. CXCL14 and insulin action. Vitam Horm. 2009;80:107-23. https://doi.org/10.1016/S0083-6729(08)00605-5.
          42. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G, Zlabinger GJ, Stulnig TM. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab.2008;93(8):3215-21. https://doi.org/10.1210/jc.2007-2630.
          43. Ilhan N, Susam S, Canpolat O, Belhan O. The emerging role of leptin, Adiponectin and Visfatin in Ischemic/Hemorrhagic stroke. Br J Neurosurg. 2019;33(5):504-507. https://doi.org/10.1080/0268
          44. 2019.1578862.
          45. Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab.
          46. ;90(4):2282-9. https://doi.org/10.1210/jc.2004-1696.
          47. Walker GE, Marzullo P, Prodam F, Bona G, Di Blasio AM. Obesity modifies expression profiles of metabolic markers in superficial and deep subcutaneous abdominal adipose tissue depots. Endocrine.
          48. ;46(1):99-106. https://doi.org/10.1007/s12020-013-0040-x.
          49. Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN. The role of monocytosis and neutrophilia in atherosclerosis. J Cell Mol Med. 2018;22(3):1366-1382. https://doi. org/10.1111/jcmm.13462.
          50. Pereira S, Teixeira L, Aguilar E, Oliveira M, Savassi-Rocha A, Pelaez JN, Capettini L, Diniz MT, Ferreira A, Alvarez-Leite J. Modulation of adipose tissue inflammation by FOXP3+ Treg cells, IL-10, and TGF-β in metabolically healthy class III obese individuals. Nutrition. 2014;30(7-8):784-90. https://doi.org/10.1016/j. nut.2013.11.023.
          51. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, Basdevant A, Guerre-Millo M, Poitou C, Zucker JD, Bedossa P, Clément K. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59(11):2817-25. https://doi.org/10.2337/db10-0585.
          52. Park HR, Jo SK, Jung U. Ionizing Radiation Promotes Epithelial- to-Mesenchymal Transition in Lung Epithelial Cells by TGF- β-producing M2 Macrophages. In Vivo. 2019;33(6):1773-1784. https://doi.org/10.21873/invivo.11668.
          53. Komohara Y, Fujiwara Y, Ohnishi K, Shiraishi D, Takeya M. Contribution of Macrophage Polarization to Metabolic Diseases. J Atheroscler Thromb. 2016;23(1):10-7. https://doi.org/10.5551/ jat.32359.
          54. Guilliams M, Thierry GR, Bonnardel J, Bajenoff M. Establishment and Maintenance of the Macrophage Niche. Immunity. 2020;52(3):434-451. https://doi.org/10.1016/j.immuni.2020.02.015.
          55. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest.2007;117(1):175-84. https://doi.org/10.1172/JCI29881.
          56. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56(1):16-23. https:// doi.org/10.2337/db06-1076.
          57. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57(12):3239-46. https://doi.org/10.2337/db08-0872.
          58. Kawanishi N, Yano H, Yokogawa Y, Suzuki K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev. 2010;16:105-18.
          59. Amengual J, Barrett TJ. Monocytes and macrophages in atherogenesis. Curr Opin Lipidol. 2019;30(5):401-408. https://doi. org/10.1097/MOL.0000000000000634.
          60. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet--induced obesity in mice. Diabetes. 2010;59(5):1171-81. https://doi.org/10.2337/db09-1402.
          61. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910-8. https://doi.org/10.2337/db07-0767.
          62. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Györi G, Zlabinger GJ, Stulnig TM. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond). 2007;31(9):1420-8. https://doi.org/10.1038/sj.ijo.0803632.
          63. Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, Sengenes C, Galitzky J, Lafontan M, Karpe F, Frayn KN, Bouloumié A. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008;117(6):806-15. https://doi.org/10.1161/CIRCULATIONAHA.107.724096.
          64. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, Guerre-Millo M, Clément K. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94(11):4619-23. https://doi.org/10.1210/ jc.2009-0925.
          65. Spencer M, Yao-Borengasser A, Unal R, Rasouli N, Gurley CM, Zhu B, Peterson CA, Kern PA. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab. 2010;299(6):E1016-27. https://doi.org/10.1152/ajpendo.00329.2010.
          66. Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G. Macrophage plasticity in experimental atherosclerosis. PLoS One. 2010;5(1):e8852. https://doi.org/10.1371/journal. pone.0008852.
          67. Molgat AS, Gagnon A, Foster C, Sorisky A. The activation state of macrophages alters their ability to suppress preadipocyte apoptosis. J Endocrinol. 2012;214(1):21-9. https://doi.org/10.1530/ JOE-12-0114.
          68. Elieh Ali Komi D, Shafaghat F, Christian M. Crosstalk Between Mast Cells and Adipocytes in Physiologic and Pathologic Conditions. Clin Rev Allergy Immunol. 2020;58(3):388-400. https://doi. org/10.1007/s12016-020-08785-7.
          69. Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 2016;39(11):1588-1596. https://doi.org/10.1007/s12272-016-0820-y.
          70. Koliwad SK, Streeper RS, Monetti M, Cornelissen I, Chan L, Terayama K, Naylor S, Rao M, Hubbard B, Farese RV Jr. DGAT1- dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. J Clin Invest. 2010;120(3):756-67. https://doi.org/10.1172/JCI36066.
          Sistema OJS 3.4.0.5 - Metabiblioteca |