Cómo citar
García, A., & García, G. A. (2011). Biotina y regulación transcripcional (génica) y epigenética en la especie humana. Revista Repertorio De Medicina Y Cirugía, 20(3), 158-168. https://doi.org/10.31260/RepertMedCir.v20.n3.2011.756

Autores/as

Ananías García
Grégory Alfonso García

Resumen

La biotina es una vitamina hidrosoluble del complejo B que se conocecomo una coenzima para carboxilasas en la especie humana. Es evidente que está ligada en forma covalente con distintos residuos de lisina en las histonas, afectando así la estructura cromatínica, muy estudiada mediante la regulación génica y la herencia no-mendeliana transgeneracional, denominada epigenética. Esta nueva ciencia estudia las modificaciones de ADN y de las proteínas unidas a él (sobre todo histonas), que alteran la estructura de la cromatina sin modificar la secuencia nucleotídica del ADN. El objetivo de esta revisión es presentar una breve actualización sobre la biotina desde el punto de vista de regulación genética y epigenética, los roles derivados en la patogénesis de ciertas enfermedades y el entendimiento de los potenciales usos farmacológicos futuros.

Licencia

Citas

1. KrebsJE, Goldstein ES, KilpatrickST. Lewin's Genes X. I0th ed. Sudbury, MA: Janes & Bartlett Publishers; 2009.
2. Bedregal P, Shand B, Santos MJ,Ventura-Juncá P. Contribution of epigenetics to understand human development. Rev Med Chil 2010;138: 366-72.
3. Chi P, Allis CD, Wang GG. Covalent histone modifications - miswritten, misinterpreted and mis-era.sed inhumancancers. Nat Rev Cancer 201O; 1 O: 457-69.
4. Zhu Q, Wani AA. Histone modifications: crucial elements for dama.ge response and chromatin restoration. J Cell Physiol.201O; 223: 283-8.
5. Oommen AM, Griffin JB, Sarath G, Zempleni J. Roles for nutrients in epigenetic events. J Nutr Biochem. 2005; 16:74-7.
6. Haggarty P. B-vitamins, genotype and disease causality. Proc Nutr Soc. 2007; 66: 539-47.
7. Uhich CM, Reed MC, Nijhout HF.Modeling folate, one-carbon metabolism, and DNA methylation. Nutr Rev. 2008; 66 Suppl 1: S27-30 .
8. Imai S. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirtl and systemic NAD biosynthesis.Biochim Biophys Acta. 2009; 1790: 997-1004.
9. Hassan YI, Zempleni J. Epigenetic regulation of chromatin structure and gene function by biotin. J Nutr. 2006; 136:1763-5
10. Abedin SA, Banwell CM, Colston KW, Carlberg C, Campbell MJ. Epigenetic corruption ofV DR signalling in malignancy. Anticancer Res. 2006; 26:2557-66.
11. Cross HS. Extrarenal vitamin D hydroxylase expression and activity in normal and malignant cells: modification of expression by epigenetic mechanisms and dietary substances. Nutr Rev. 2007; 65:S108-12
12. Johanning GL, Piyathilake CJ. Retinoids and epigenetic silencing in cancer. Nutr Rev. 2003; 61: 284-9.
13. OMIM [base de datos en Internet]. Baltimore: Johns Hopkins University; 1966- [citado 25 Mar 2011]. Disponible en: http://www.ncbi.nlm.nih.gov/ entrez/dispornim
14. HUGO [base de datos en Internet]. Bethesda: National Library ofMedicine; 1989- [citado 25 Mar 2011]. Disponible en: http://www.hugointernational. org/index.html
15. IUMBM [base de datos en Internet]. London: lnternational Union of Biochemistry and Molecular Biology;1977- [citado 25 Mar 2011]. Disponible en: http://www.chem.qmul.ac.uk/iupac/jcbn/index.html#2
16. Bender DA. Nutritional biochemistry ofthe vitamins. 2nd. ed. Cambridge: Cambridge University Press; 2003.
17. Ball GFM. Yitarnins: their role in the humanbody. 1st. ed. Oxford: Blackwell; 2004.
18. Zempleni J, Rucker RB, McCormick DB, Suttie JW. Handbook of vitamins. 4th. ed. Boca Raton (Florida): CRC Press-Taylor & Francis Group; 2007.
19. Zempleni J, Wijeratne SS, Hassan Y!. Biotin. Biofactors. 2009; 35:36-46.
20. Berg JM, Tymoczko JL, Stryer L. Biochernistry. 6th. ed. New York: W. H. Freeman; 2006.
21. Devlin TM. Textbook of biochemistry with clinical correlations. 6th. ed. New York: Wiley-Liss; 2006.
22. Nelson DL, Cox MM. Lehninger'sprincipies ofbiochernistry. 5th. ed. New York: W. H. Freeman; 2008.
23. Scriver CR, Sly WS, Childs B, et al. The metabolic and molecular basis of inherited disease. 8th. ed. New York: McGraw-Hill Professional; 2001.
24. Subrarnanian VS, Marchant JS, Said HM. Biotin-responsive basal ganglia disease-linked mutations inhibit thiarnine transport via hTHTR2: biotin is not a substrate for hTHTR2. Am J Physiol Cell Physiol. 2006; 291 (5):C851-9.
25. Beckett D. Biotinsensing: universalinfluence ofbiotinstatuson transcription. Annu Rev Genet. 2007;4 l: 443-64.
26. Del Campillo-Campbell A, Kayajanian G, Campbell A, Adhya S. Biotin­ requiring mutants ofEscherichia coli K-12. J Bacteriol. 1967; 94:2065-6.
27. Campbell A, Del Campi!Jo-Carnpbell A, Chang R. A mutant ofEscherichia Coli that requires high concentrations ofbiotin. Proc Natl Acad Sci USA. 1972; 69:676-80.
28. Cleary PP, Carnpbell A. Deletion and complementation analysis ofbiotin genecluster ofEscherichia coli. J Bacteriol. 1972; 112:830-9.
29. Cleary PP, Carnpbell A, Chang R. Location ofpromoter and operator sites in the biotin geneclusterofEscherichia coli. Proc Natl Acad Sci USA. 1972; 69:2219-23.
30. Carnpbell A, Chang R, Barker D, KetnerG Biotin regulatory (bir) mutations ofEscherichia coli. JBacteriol. 1980; 142:1025-28.
31. Rodionov DA,MironovAA, Gelfand MS. Conservation ofthe biotin regulon and the BirA regulatory signa! in Eubacteria and Archaea. Genome Res. 2002; 12:1507-16
32. Streit WR, Entcheva P. Biotin in microbes. the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbio! Biotechnol. 2003: 61:21-31.
33. Rogers TO, LichsteinHC. Characterization ofthe biotintransportsystem in Saccharomyces cerevisiae. J Bacteriol. 1969; 100: 557-64.
34. Weider M, Machnik A, Klebl F, Sauer N. VhrIp, a new transcription factor from budding yeast, regulates biotin-dependent expression ofVHTI and BIO5. J Biol Chem. 2006; 281:13513 24.
35. Pacheco-Alvarez D, Solórzano-Vargas RS, Gonzalez-Noriega A, Michalak C, Zempleni J, Leon-Del-Rio A. Biotin availability regulatesexpression ofthe sodium-dependent multivitarnin transporter and the rate ofbiotin uptake in HepG2 cells. Mol Genet Metab. 2005;85: 301 7.
36. Reidling JC, SaidHM. Regulation ofthe human biotin transporter hSMVT promoter by KLF 4 andAP-2: confirmation ofpromoter activityin vivo. Am J Physiol Cell Physiol. 2007;292: Cl305- l 2.
37. Reidling JC, Nabokina SM, Said HM. Molecular mechanisms involved in the adaptive regulation ofhuman intestinal biotin uptake: a study of the hSMVT system. Am J Physiol Gastrointest Liver Physiol. 2007; 292:0275-81.
38. NikolauBJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases. Arch Biochem Biophys. 2003; 414: 211-22.
39. Roje S. Vitarnin B biosynthesis in plants. Phytochernistry. 2007; 68: 1904-21.
40. Vesely DL. Biotin enhances guanulatecyclaseactivity. Science. 1982; 216: 1329-30.
41. Vesely DL, Worrnser HC, Abrarnson HN. Biotin analogs actívate guanylate cyclase. Mol Cell Biochem. 1984; 60:109-14.
42. Spence JT, Koudeka AP. Effects ofbiotin" upon the intracelullular leve! of cGMP and the activity ofglucokinase in cultured rat hepatocytes. J Biol Chem. 1984; 259: 6393-96.
43. De La Vega LA, Stockert RJ. Regulation ofthe insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. Am J Physiol Cell Physiol. 2000;279: C2037-42.
44. León del Río A. La vitamina biotina modifica los patrones de expresión genética en células humanas: evidencia de un sistema de regulación transcripcional multisistérnica queprotege el metabolismo cerebraldurante el ayuno. Mensaje Bioquím.. 2003; 27: 221-41.
45. Rodríguez-Meléndez R, Zempleni J. Regulation of gene expression by biotin. J Nutr Biochem. 2003;14: 680-90.
46. Grave! RA, Narang MA. Molecular genetics ofbiotin metabolism: old vitamin, new science. J Nutr Biochem. 2005; 16:428-31.
47. León-Del-Río A. Biotin-dependent regulation ofgene expressionin human cells. J Nutr Biochem. 2005;16: 432-4.
48. Zempleni, J. Uptake, localization, and noncarboxylase roles ofbiotin. Annu. Rev. Nutr. 2005; 25, 175 96.
49. Stanley JS, Griffin JB, Zempleni J. 2001. Biotinylation of histones in human cells. Effects ofcellproliferation. Eur. J.Biochem. 268:5424-29.
50. Chandler CS, Ballard FJ. Multiple biotin-containing protein in 3T3-L1 cells. Biochem J. 1986; 237: 123-30.
51. Oizumi J, Hayakawa K. Effect ofplasma biotinyl-peptides on biotinidase activity. BioFactors. 1988; 2: 179-85.
52. Dakshinamurti K, Mistry SP. Tissue and intracelular distribution ofbiotin­ C14OHOH in rats and chicks. J Biol Chem. 1963; 238: 294-334.
53. Nakatani Y, Kitarnura H, Inayama Y, Ogawa N. Pulmonary endoderrnal tumor resembling fetal lung: The optically clear nucleus is rich in biotin. Am J Surg Pathol. 1994; 18: 637-42.
54. Hymes J, Fleischhauer K, Wolf B. Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med. 1995; 56: 76-83.
55. Solorzano-Vargas RS, Pacheco-Alvarez D, Leon-Del-Rio A. Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc Natl Acad Sci USA. 2002; 99:5325-30.
56. Narang MA, Dumas R, Ayer LM, Gravel RA. Reduced histone biotinylation in multiple carboxylase deficiency patients: Anuclear role for holocarboxylase synthetase. Hum Mol Genet. 2004; 13: 15-23.
57. Stanley C, Hymes J, Wolf B. Identification of alternatively spliced human biotinidase mRNAs and putative localization of endogenous biotinidase. Mol Genet Metab. 2004; 81: 300-12.
58. Ballard T, Wolff J, Griffin J, Stanley J, van Calcar S, Zempleni J. Biotinidase catalyzes debiotinylation of histones. Eur J Nutr. 2002: 41: 78-84.
59. Pomponio RJ, Hymes J, Reynolds TR, Meyers GA, Fleischhauer K, Buck GA. et al. Mutations in the human biotinidase gene that cause profound biotinidase deficiency in symptomatic children: molecular, biochemical, and clinical analysis. Pediat Res. 1997; 42: 840-48.
60. Hymes J, Wolf B. Human biotinidase isn't just for recycling biotin. J Nutr. 1999; 129: 485S-89S.
61. Wolf B, Jensen K. Evolutionary conservation of biotinidase: implications for the enzyme's structure and subcellular localization. Mol Genet Metab. 2005; 86:44-50.
62. Healy S, Heightman TD, Hohmann L, Schriemer D, Gravel RA. Nonenzymatic biotinylation of histone H2A. Protein Sci. 2009;18: 314-28.
63. Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J. Lysine residues in N- and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem. 2006; 17: 225-33.
64. Kobza K, Camporeale G, Rueckert B, Kueh A, Griffin JB, Sarath GS Zempleni J. K4, K9, and K18 in human histone H3 are targets for biotinylation by biotinidase. FEBS J. 2005;272: 4249-59.
65. Kobza K, Sarath G, Zempleni J. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3. BMB Rep. 2008;41:310-5.
66. Camporeale G, Shubert EE, Sarath G, Cemy R, Zempleni J. K8 and K12 are biotinylated in human histone H4. Eur J Biochem. 2004; 271:2257-63.
67. Chew YC, Raza AS, Sarath G, Zempleni J. Biotinylation of K8 and K12 co-occurs with acetylation and mono-methylation in human histone H4. FASEB J. 2006; 20:A610.
68. Camporeale G, Oommen AM, Griffin JB, Sarath G, Zempleni J. K12- biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J Nutr Biochem. 2007;18:760-8.
69. HassanYI, Zempleni J. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev. 2008; 66:721-5.
70. Zempleni J, Chew YC, Hassan YI, Wijeratne SS. Epigenetic regulation of chromatin structure and gene function by biotin: are biotin requirements being met? Nutr Rev. 2008 Aug; 66 Suppl 1:S46-8.
71. Bourque G. Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev. 2009; 19:607-12.
72. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rey Genet. 2009;10: 691-703.
73. Schneider AM, Duffield AS, Symer DE, Bums KH. Roles of retrotransposons in benign and malignant hematologic disease. Cellscience. 2009;6:121- 145.
74. Buretix-Tomljanoviw A, Tomljanovise D. Human genome variation in health and in neuropsychiatric disorders. Psychiatr Danub. 2009;21: 562-9.
75. Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol. 2010;39: 51-61.
76. Cohen O, Lock WM, Mager DL. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene. 2009;448:105-14.
77. Chew YC, West JT, Kratzer SJ, llvarsonn AM, Eissenberg JC, Dave BJ. et al. Biotinylation of histones represses transposable elements in human and mouse cells and cell limes and in Drosophila melanogaster. J Nutr. 2008;138: 2316-22.
78. Zempleni J, Chew YC, Bao B, Pestinger V, Wijeratne SS. Repression of transposable elements by histone biotinylation. J Nutr. 2009;139: 2389-92.
79. Martínez P, Blasco MA. Role of shelterin in cancer and aging. Aging Cell. 2010 Jun 21.
80. Wijeratne SS, Camporeale G, Zempleni J. K12-biotinylated histone H4 is enriched in telomeric repeats from human lung IMR-90 fibroblasts. J Nutr Biochem. 2010; 21:310-6.
81. Mumane JP. Telomere loss as a mechanism for chromosome instability in human cancer. Cancer Res. 2010;70: 4255-9.
82. O'Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010; 11:171-81.
83. Young VR, Newberne PM. Vitamins and cancer prevention: issues and dilemmas. Cancer. 1981; 47 (5 Suppl):1226-40.
84. McCarty ME High-dose biotin, an inducer of glucokinase expression, may synergize with chromium picolinate to enable a definitive nutritional therapy for type II diabetes. Med Hypotheses. 1999;52: 401-6.
85. McCarty MF. High-dose biotin may down-regulate hepatic expression of acute phase reactants by mimicking the physiological role of nitric oxide. Med Hypotheses. 2003;61: 417-8.
86. McCarty MF. Nutraceutical resources for diabetes prevention-an update. Med Hypotheses. 2005; 64:151-8.
87. McCarty MF. cGIvIP may have trophic effects on beta cell function comparable to those of cAMP, implying a role for high-dose biotin in prevention/ treatment of diabetes. Med Hypotheses. 2006;66: 323-8.
88. McCarty MF. Exenatide and biotin in conjunction with a protein-sparing fast for normalization of beta cell function in type 2 diabetics. Med Hypotheses. 2007;69: 928-32.
89. García GA, Clavijo Grimaldi D, Mejía OR, García Cardona A, Vittorino M, Casadiego CA. Escenciales en Biomedicina (Biología, Patobiología y Bioclínica) Humana de las NOSS (Óxido Nítrico-Sintetasas). Rev CES Med. 2007; 21: 61-82.
90. García GA, Mejía OR, García Cardona A, Gaitán AA Esenciales en biología, patobiología y bioclínica del óxido nítrico. Med UIS. 2009;22: 41-54.
91. Pacheco-Alvarez D, Solórzano-Vargas RS, Del Río AL. Biotin in metabolism and its relationship to human disease. Arch Med Res 2002;33: 439-47.
92. Zempleni J, Hassan YI, Wijeratne SS. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab. 2008;3: 715-24.
93. Scheinfeld N, Dahdah MJ, Scher R. Vitamins and minerals: their role in nail health and disease. .I Drugs Dermatol. 2007; 6: 782-7.

Descargas

La descarga de datos todavía no está disponible.
Coordinador Editorial

Leonardo Arismendy Rodriguez
jlarismendy@fucsalud.edu.co
Fundación Universitaria de Ciencias de la Salud - FUCS
Bogotá DC, Colombia
Dirección: Carrera 19 No. 8 A 32
Tel: (+571) 3538100 Ext. 2836

Asistente Editorial

Gloria Restrepo B.
revista.repertorio@fucsalud.edu.co
Fundación Universitaria de Ciencias de la Salud - FUCS
Bogotá DC, Colombia
Dirección: Carrera 19 No. 8 A 32
Tel: (+571) 3538100 Ext. 2836


Vigilada Mineducación

Sistema OJS 3 - Metabiblioteca |