Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Principios de Tractografía Cerebral

Principles of brain tractography




Sección
Artículos de investigación

Cómo citar
Ordóñez Rubiano, E., Marín Muñoz, J., Hernández, J., Bello Dávila, M., Ordóñez, J., Saavedra, K., Montes Reyes, N., Angulo, D., & Ordóñez Mora, E. (2019). Principios de Tractografía Cerebral. Revista Repertorio De Medicina Y Cirugía, 28(1). https://doi.org/10.31260/RepertMedCir.v28.n1.2019.874

Dimensions
PlumX
Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Edgar Ordóñez Rubiano
    Jorge Marín Muñoz
      José Hernández
        May Bello Dávila
          Javier Ordóñez
            Kaethe Saavedra
              Nathalia Montes Reyes
                Diego Angulo
                  Edgar Ordóñez Mora

                    Objetivo: hacer una revisión de los principales tractos cerebrales y sus aplicaciones en las neurociencias a partir de la experiencia en la Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá D.C., Colombia. Materiales y métodos: revisión bibliográfica y utilización de imágenes con resonadores de 1.5 T o 3 T para describir las imágenes de tractografía en enfermedades del sistema nervioso central. Resultados: se muestran las características principales de la tractografía basados en casos de nuestra institución. Discusión: en la gran mayoría de patologías cerebrales no hay estudios sobre la utilidad de la tractografía. Aunque es un estudio disponible en la actualidad, es poca la información que suele obtenerse a nivel clínico, pues toma bastante tiempo el posproceso  de las imágenes y en la mayoría de centros no está protocolizada la secuencia de obtención de la reconstrucción de cada uno de los tractos por separado. Conclusiones: es posible reconstruir los principales tractos cerebrales con escáneres de 1.5 T y 3 T, identificando las vías clave del cerebro y su relación con tumores cerebrales, trauma craneoencefálico, abuso de sustancias y otras afecciones.


                    Visitas del artículo 2960 | Visitas PDF 9278


                    Descargas

                    Los datos de descarga todavía no están disponibles.

                    1. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging : JMRI. 2001 Apr;13(4):534-46. PubMed PMID: 11276097. Epub 2001/03/29.
                    2. Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC. Diffusion tensor MR imaging of the brain and white matter tractography. AJR American journal of roentgenology. 2002 Jan;178(1):3-16. PubMed PMID: 11756078. Epub 2002/01/05.
                    3. Chenevert TL, Ross BD. Diffusion imaging for therapy response assessment of brain tumor. Neuroimaging clinics of North America. 2009 Nov;19(4):559-71. PubMed PMID: 19959005. Pubmed Central PMCID: 4044869. Epub 2009/12/05.
                    4. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. Journal of magnetic resonance. 2011 Dec;213(2):560-70. PubMed PMID: 22152371. Epub 2011/12/14.
                    5. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T. MR tractography: a review of its clinical applications. Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine. 2009;8(4):165-74. PubMed PMID: 20035125. Epub 2009/12/26.
                    6. Angulo DA, Schneider C, Oliver JH, Charpak N, Hernandez JT. A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets. Front Neuroinform. 2016;10:36. PubMed PMID: 27601990. Pubmed Central PMCID: PMC4993811.
                    7. Ashburner J. Computational anatomy with the SPM software. Magn Reson Imaging. 2009 Oct;27(8):1163-74. PubMed PMID: 19249168.
                    8. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000 Jun;11(6 Pt 1):805-21. PubMed PMID: 10860804.
                    9. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005 Jul 01;26(3):839-51. PubMed PMID: 15955494.
                    10. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007 Oct 15;38(1):95-113. PubMed PMID: 17761438.
                    11. Dinov ID, Van Horn JD, Lozev KM, Magsipoc R, Petrosyan P, Liu Z, et al. Efficient, Distributed and Interactive Neuroimaging Data Analysis Using the LONI Pipeline. Front Neuroinform. 2009;3:22. PubMed PMID: 19649168. Pubmed Central PMCID: PMC2718780.
                    12. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform. 2011;5:13. PubMed PMID: 21897815. Pubmed Central PMCID: PMC3159964.
                    13. Xu T, Yang Z, Jiang L, Xing X, Zour X. A connectome computation system for discovery science of brain. Sci Bull. 2015;60:86-95.
                    14. Charpak N, Ruiz-Pelaez JG, Figueroa de CZ, Charpak Y. Kangaroo mother versus traditional care for newborn infants </=2000 grams: a randomized, controlled trial. Pediatrics. 1997 Oct;100(4):682-8. PubMed PMID: 9310525.
                    15. Suffren S, Angulo D, Ding Y, Reyes P, Marin J, Hernandez JT, et al. Long-term attention deficits combined with subcortical and cortical structural central nervous system alterations in young adults born small for gestational age. Early Hum Dev. 2017 Jul;110:44-9. PubMed PMID: 28544954.
                    16. Esteban SVJ. Características de las tractografías y relación clínica e histopatológíca en pacientes con tumores intracraneales supratentoriales. In: Nicolás G, editor. Universidad del Bosque: Insitituto de Neurociencias; 2010. p. 15-22.

                    17. Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery. 2017 May. PubMed PMID: 28486641. Epub 2017/05/09. eng.
                    18. Edlow BL, Takahashi E, Wu O, Benner T, Dai G, Bu L, et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012 Jun;71(6):531-46. PubMed PMID: 22592840. Pubmed Central PMCID: PMC3387430.
                    19. Steriade M, Glenn LL. Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J Neurophysiol. 1982 Aug;48(2):352-71. PubMed PMID: 6288887.
                    20. Parvizi J, Damasio A. Consciousness and the brainstem. Cognition. 2001 Apr;79(1-2):135-60. PubMed PMID: 11164026.
                    21. Starzl TE, Taylor CW, Magoun HW. Ascending conduction in reticular activating system, with special reference to the diencephalon. J Neurophysiol. 1951 Nov;14(6):461-77. PubMed PMID: 14889301. Pubmed Central PMCID: PMC2962410.
                    22. Steriade M. Arousal: revisiting the reticular activating system. Science. 1996 Apr 12;272(5259):225-6. PubMed PMID: 8602506.
                    23. Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T, et al. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol. 2013 Jun;72(6):505-23. PubMed PMID: 23656993. Pubmed Central PMCID: PMC3761353.
                    24. Jang SH, Kwon HG. The ascending reticular activating system from pontine reticular formation to the hypothalamus in the human brain: a diffusion tensor imaging study. Neurosci Lett. 2015 Mar 17;590:58-61. PubMed PMID: 25641134.
                    25. Jang SH, Kwon HG. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study. Neurosci Lett. 2015 Oct 8;606:200-3. PubMed PMID: 26363340.
                    26. Yeo SS, Chang PH, Jang SH. The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain. Front Hum Neurosci. 2013;7:416. PubMed PMID: 23898258. Pubmed Central PMCID: PMC3722571.
                    27. Jang SH, Kim SH, Lim HW, Yeo SS. Recovery of injured lower portion of the ascending reticular activating system in a patient with traumatic brain injury. Am J Phys Med Rehabil. 2015 Mar;94(3):250-3. PubMed PMID: 25700167.
                    28. Jang SH, Kwon HG. Injury of the Ascending Reticular Activating System in Patients With Fatigue and Hypersomnia Following Mild Traumatic Brain Injury: Two Case Reports. Medicine (Baltimore). 2016 Feb;95(6):e2628. PubMed PMID: 26871783. Pubmed Central PMCID: PMC4753878.
                    29. Jang SH, Lee HD. The Ascending Reticular Activating System in a Patient With Severe Injury of the Cerebral Cortex: A Case Report. Medicine (Baltimore). 2015 Oct;94(42):e1838. PubMed PMID: 26496328. Pubmed Central PMCID: PMC4620841.
                    30. Luyt CE, Galanaud D, Perlbarg V, Vanhaudenhuyse A, Stevens RD, Gupta R, et al. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: a bicentric pilot study. Anesthesiology. 2012 Dec;117(6):1311-21. PubMed PMID: 23135257.
                    31. van der Eerden AW, Khalilzadeh O, Perlbarg V, Dinkel J, Sanchez P, Vos PE, et al. White matter changes in comatose survivors of anoxic ischemic encephalopathy and traumatic brain injury: comparative diffusion-tensor imaging study. Radiology. 2014 Feb;270(2):506-
                    16. PubMed PMID: 24471392.
                    32. Edlow BL, Copen WA, Izzy S, Bakhadirov K, van der Kouwe A, Glenn MB, et al. Diffusion tensor imaging in acute-to-subacute traumatic brain injury: a longitudinal analysis. BMC Neurol. 2016;16:2. PubMed PMID: 26754948. Pubmed Central PMCID: PMC4707723.
                    33. Edlow BL, Copen WA, Izzy S, van der Kouwe A, Glenn MB, Greenberg SM, et al. Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocrit Care. 2015 Dec 21. PubMed PMID: 26690938.
                    34. Galanaud D, Perlbarg V, Gupta R, Stevens RD, Sanchez P, Tollard E, et al. Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology. 2012 Dec;117(6):1300-10. PubMed PMID: 23135261.
                    35. Skandsen T, Kvistad KA, Solheim O, Lydersen S, Strand IH, Vik
                    A. Prognostic value of magnetic resonance imaging in moderate and severe head injury: a prospective study of early MRI findings and one-year outcome. J Neurotrauma. 2011 May;28(5):691-9. PubMed PMID: 21401308.
                    36. Stein SC, Georgoff P, Meghan S, Mizra K, Sonnad SS. 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma. 2010 Jul;27(7):1343-53. PubMed PMID: 20392140.
                    37. Voss HU, Ulug AM, Dyke JP, Watts R, Kobylarz EJ, McCandliss BD, et al. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest. 2006 Jul;116(7):2005-11. PubMed PMID: 16823492. Pubmed Central PMCID: PMC1483160.
                    38. Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, et al. Fusing DTI and fMRI data: a survey of methods and applications. Neuroimage. 2014 Nov 15;102 Pt 1:184-91. PubMed PMID: 24103849. Pubmed Central PMCID: PMC4012015.
                    39. Rascovsky S, Delgado J, Sanz A, Castrillion J. Tractografia guiada por resonancia funcional cerebral: revision de la tecnica y casos representativos. Rev colomb radiol. 2008;19(1):2323-8.
                    40. Ramírez S, Marín J, Hernández J, González A, López O, Posso A, et al. Síndrome de Melas : correlación clínica con hallazgos imagenológicos en espectroscopia y tractografía, reporte de caso. Acta Neurol Colomb. 2016;32(9):227-32.
                    41. Sierra-Montoya M, Ascensio-Lancheros J, JH. O-G. Amnesia retrógrada aislada: descripción clínica y neuroimágenes de un caso. Acta Neurol Colomb. 2014;30(3):215-21.

                    Sistema OJS 3.4.0.5 - Metabiblioteca |