Skip to main navigation menu Skip to main content Skip to site footer

Covid-19 worldwide forecasts for the year 2021

Predicción del COVID-19 a nivel mundial para el año 2021




Section
Research Article

How to Cite
Díaz Pinzón, J. E. (2020). Covid-19 worldwide forecasts for the year 2021. Journal of Medicine and Surgery Repertoire, 131-137. https://doi.org/10.31260/RepertMedCir.01217372.1143

Dimensions
PlumX
license

   

Jorge Enrique Díaz Pinzón

    Jorge Enrique Díaz Pinzón,

    Ingeniero. Magister en Gestión de la Tecnología Educativa, Especialista en Administración de la Informática Educativa. Docente de matemáticas e Investigador. 


     

    Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has spread rapidly around the world since it emerged in Wuhan, China in late 2019. Objective: to describe COVID-19 worldwide forecasts of infections and deaths over the year 2021. Methodology: the method used to calculate the prediction was the Holt model. Data was analyzed with the SPSS version 25.0 statistical package. Results: according to the COVID-19 global projection for the year 2021, there will be an estimated 96’878.746 cases by the end of January 2021 and 283’662.031 by the end of December 2021. Conclusion: the HOLT model illustrates a possible scenario of the disease in terms of people infected and killed in year 2021, which in light of the results is not at all flattering for the world, so isolation measures need to continue in order to achieve stabilization of the disease.


    Article visits 5011 | PDF visits 4266


    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med.. 2020;382(13):1199-207. doi: 10.1056 / NEJMoa2001316
    2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3
    3. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80 e8. doi: https://doi.org/10.1016/j.cell.2020.02.052
    4. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama. 2020;323(16):1574-81. doi: 10.1001 / jama.2020.5394
    5. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. doi: 10.1136/bmj.m1985
    6. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama. 2020;323(20):2052-9. Epub 2020/04/23.
    7. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966.
    8. Lewnard JA, Liu VX, Jackson ML, Schmidt MA, Jewell BL, Flores JP, et al. Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study. BMJ. 2020;369:m1923.
    9. Dryhurst S, Schneider CR, Kerr J, Freeman ALJ, Recchia G, van der Bles AM, et al. Risk perceptions of COVID-19 around the world. Journal of Risk Research. 2020;23(7-8):994-1006.
    10. Díaz-Pinzón, J.E. (2020). Estudio de los resultados del contagio por COVID-19 a nivel mundial. Repert Med Cir. 2020;29(Supl. Núm. 1):65-71. DOI: 10.31260/RepertMedCir.01217372.1089
    11. Díaz-Pinzón, J.E. Correlación y regresión lineal de la evaluación tiempo y puntaje con recurso interactivo flash. INNOVA Research Journal. 2017;2(10):1-8. doi: https://doi.org/10.33890/innova.v2.n10.2017
    12. Betancourt D. La tendencia en el suavizamiento exponencial doble o modelo de Holt [Internet]. Ingenio Empresa; 2020 [cited 2020 noviembre 13]; Available from: https://ingenioempresa.com/suavizacion-exponencial-doble/.
    13. Izar JM. Método de Holt [Internet]. ResearchGate; 2019 [cited 2020 noviembre 3]; Available from: https://www.researchgate.net/publication/331844153_Metodo_de_Holt.
    14. Camacho A. Método Holt [Internet]. slideshare; 2011 [cited 2020 noviembre 16]; Available from: https://es.slideshare.net/adzarael/mtodo-holt.
    15. Universidad Johns Hopkins. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Internet]. Universidad Johns Hopkins; 2020 [cited 2020 noviembre 16]; Available from: https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.
    16. Díaz-Pinzón JE. Uso de modelo predictivo para la dinámica de transmisión del COVID-19 en Colombia. Repert Med Cir. 2020;29(Núm.Supl.1):34-44. doi: 10.31260/RepertMedCir.01217372.1056
    17. Díaz-Pinzón JE. Proyección de la propagación del COVID-19 en Colombia. Rev. Med. 2020;28(1):11-20. doi: 10.18359/rmed.4702
    Sistema OJS 3.4.0.5 - Metabiblioteca |