Skip to main navigation menu Skip to main content Skip to site footer

COVID-19 vaccination coverage by regime in Colombia

Cobertura de vacunación contra COVID-19 por esquema en Colombia




Section
Research Article

How to Cite
Díaz Pinzón, J. E. (2021). COVID-19 vaccination coverage by regime in Colombia. Journal of Medicine and Surgery Repertoire, 30. https://doi.org/10.31260/RepertMedCir.01217372.1280

Dimensions
PlumX
license

   


Jorge Enrique Díaz Pinzón,

Ingeniero. Magister en Gestión de la Tecnología Educativa, Especialista en Administración de la Informática Educativa. Docente de matemáticas e Investigador. Secretaría de Educación de Soacha, Cundinamarca, Colombia.

 


Introduction: one of the main difficulties in the early development of vaccines against SARS coronavirus has been finding an unexpected eosinophil-associated immunopotentiation or increased infectivity, that occurs following provocation infections and immunization with whole virus vaccines or full-length spike protein vaccines. Objective: to describe the progress of COVID-19 vaccination coverage by vaccination regime in the territorial entities of Colombia from February 17 to August 2021. Methodology: an analytical cross-sectional study designed to gather information on administered vaccines in Colombia by vaccination regime. Data was obtained from the Ministry of Health and Social Protection webpage based on the national vaccination plan. Results: as of August 26, 2021 the territorial entities with the most vaccination coverage by vaccination regime were: San Andres and Providencia, Amazonas, Quindío, Boyacá and Tolima and those with the lowest coverage by vaccination regime were: Vichada, Choco, Guajira, Putumayo and Cundinamarca. Conclusion ensuring national safety through coronavirus vaccine promotion and storage, establishing financial support mechanisms at the international level to endorse vaccine development, manufacturing and storage, is imperative. 


Article visits 1607 | PDF visits 766


Downloads

Download data is not yet available.
  1. Jiang S, Bottazzi ME, Du L, Lustigman S, Tseng CT, Curti E, et al. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Rev Vaccines. 2012;11(12):1405–13. https://doi.org/10.1586/erv.12.126
  2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  3. Chen WH, Strych U, Hotez PJ, Bottazzi ME. El proceso de vacunación contra el SARS-CoV-2: una descripción general. Curr Trop Med Rep. 2020;1-4. https://doi.org/10.1007/s40475-020-00201-6
  4. Thepharmaletter. J&J working on coronavirus vaccine [Internet]. Thepharmaletter; 2020 [citado julio de 2021]. Disponible en: https://www.thepharmaletter.com/article/j-j-working-on-coronavirus-vaccine
  5. Cheung E. China coronavirus: Hong Kong researchers have already developed vaccine but need time to test it, expert reveals [Internet]. South China Morning Post; 2020 [citado julio de 2021]. Disponible en: https://www.scmp.com/comment/opinion/article/3150152/china-joining-pacific-trade-pact-would-benefit-all-members-gaining?module=perpetual_scroll&pgtype=article&campaign=3150152
  6. Shieber J. Codagenix raises $20 million for a new flu vaccine and other therapies [Internet]. Join TechCrunch; 2020 [citado julio de 2021]. Disponible en: https://techcrunch.com/2020/01/13/codagenix-raises-20-million-for-a-new-flu-vaccine-and-other-therapies/
  7. Chen WH, Chag SM, Poongavanam MV, Biter AB, Ewere EA, Rezende W, et al. Optimization of the Production Process and Characterization of the Yeast-Expressed SARS-CoV Recombinant Receptor-Binding Domain (RBD219-N1), a SARS Vaccine Candidate. J Pharm Sci. 2017;106(8):1961–1970. https://doi.org/10.1016/j.xphs.2017.04.037
  8. Biofarmacéuticos Clover. Clover Initiates Development of Recombinant Subunit-Trimer Vaccine for Wuhan Coronavirus (2019-nCoV) [Internet]. 2020 [citado julio de 2021]. Disponible en: https://pipelinereview.com/index.php/2020012873644/Vaccines/Clover-Initiates-Development-of-Recombinant-Subunit-Trimer-Vaccine-for-Wuhan-Coronavirus-2019-nCoV.html
  9. Janssen Vaccines & Prevention B.V. A Study to Evaluate A Range of Dose Levels of Ad26.ZEBOV and MVA-BN-Filo in Healthy Adult Participants [Internet]. ClinicalTrials.gov; 2017 [citado julio de 2021]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02543567
  10. Chen WH, Du L, Chag SM, Ma C, Tricoche N, Tao X, et al. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Hum Vaccin Immunother. 2014;10(3):648-58. doi: 10.4161/hv.27464
  11. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169–74. https://doi.org/10.1016/j.vaccine.2014.04.016
  12. Ministerio de Salud y Protección Social de Colombia. Plan de vacunación nacional contra COVID-19 [Internet]. 2021. Disponible en: https://www.minsalud.gov.co/salud/publica/Vacunacion/Paginas/Vacunacion-covid-19.aspx
  13. Díaz Pinzón JE. Estimación de la prevalencia del COVID-19 en Colombia. Repert Med Cir. 2020;29(Núm. Supl.1):99–102. https://doi.org/10.31260/RepertMedCir.01217372.1115
  14. Díaz Pinzón JE. Análisis de los resultados del contagio del COVID-19 respecto a su distribución geográfica en Colombia. Repert Med Cir. 2020;29(Núm. Supl.1):60–64. https://doi.org/10.31260/RepertMedCir.01217372.1082
  15. Díaz Pinzón JE. Dinámica y relación del contagio del COVID-19 después de iniciado el plan de vacunación contra el SARS-COV-2 en Colombia. Repert Med Cir. 2021;30(Núm. Supl.1):41–45. https://doi.org/10.31260/RepertMedCir.01217372.1227
Sistema OJS 3.4.0.5 - Metabiblioteca |