Skip to main navigation menu Skip to main content Skip to site footer

The effect of fluid challenge on ventriculo-arterial coupling in an endotoxic shock swine bio-model

Efectos del reto de líquidos sobre el acople ventrículo arterial en un biomodelo porcino de choque endotóxico




Section
Research Article

How to Cite
Diaztagle Fernández, J. J., Alvarado Sánchez , J. I. ., Caicedo Ruiz , J. D. ., Ruiz Narváez , G. A. ., Bejarano Gonzales, J. C. . ., Pinilla Amaya , D. C. ., Zambrano Ramírez , N. A. ., Ospina-Tascón , G. A. ., & Cruz Martínez , L. E. . (2023). The effect of fluid challenge on ventriculo-arterial coupling in an endotoxic shock swine bio-model. Journal of Medicine and Surgery Repertoire, 33(2), 178-185. https://doi.org/10.31260/RepertMedCir.01217372.1414

Dimensions
PlumX
license

   

Juan José Diaztagle Fernández
Juan Daniel Caicedo Ruiz
Guillermo Arturo Ruiz Narváez
Juan Camilo Bejarano Gonzales
Nicolás Andrés Zambrano Ramírez

Juan José Diaztagle Fernández,

Profesor Asistente Medicina Interna, Fundación Universitaria de Ciencias de la Salud, Profesor Asociado. Depto. de Ciencias Fisiológicas Universidad Nacional de Colombia.


Juan Daniel Caicedo Ruiz ,

Residente de Medicina Interna. Depto. de Ciencias Fisiológicas. Universidad Nacional de Colombia.


Juan Camilo Bejarano Gonzales,

Residente, especialización en Medicina Interna. Fundación Universitaria de Ciencias de la Salud.


Luis Eduardo Cruz Martínez ,

Profesor Asociado. Depto. de Ciencias Fisiológicas. Facultad de Medicina. Universidad Nacional de Colombia.


Introduction: fluid challenges (FCs) consist of measuring hemodynamic response through changes in cardiac output (CO) after fluid administration, although only measuring CO proves insufficient. Ventriculo-arterial coupling (V-A) (effective arterial elastance / tele-systolic elastance: E(a)/Ets) are variables used for a comprehensive cardiac and circulatory status appraisal. Objective: to evaluate V-A in an endotoxic shock bio-model by FCs. Materials and methods: an endotoxic shock bio-model (9 pigs). Hemodynamic variables were measured every hour from time 0 (T0) to T6. Five FCs were performed between T0 and T4. Hypotension time was referred to as HT. The median differences in variables between T0-T4 were calculated. Challenges were classified into two groups according to V-A delta (post-challenge V-A - pre-challenge V-A). In ΔV-A≤0 o>0, variables were measured before and after each FC.  The lactate to pyruvate (L/P) ratio was determined at T0, T3 and T6. Correlations between the LP T6-T0 difference and hemodynamic variables, were established. Results: V-A increased (1.58 to 2,02, p=0.042) as Eae increased (1.74 to 2.55; p=0.017). CO (4.32 to 5.46, p=0.032) and cardiac power (CP) (0.61 to 0.77, p=0,028) increased, in the ΔV-AC≤0 group. The ΔLP correlated with the systolic and diastolic shock index (r=0.73), but not with V-A. Conclusion: V-A increased significantly during endotoxic shock. The ΔAVA≤0 group, showed elevated CO and CP during FC. ΔLP did not correlate with any of the V-A variables.


Article visits 192 | PDF visits 165


Downloads

Download data is not yet available.
  1. Kattan E, Castro R, Vera M, Hernández G. Optimal target in septic shock resuscitation. Ann Transl Med. 2020;8(12):789. https://doi.org/10.21037/atm-20-1120.
  2. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181-1247. https://doi.org/10.1007/s00134-021-06506-y.
  3. Bakker J, Kattan E, Annane D, Castro R, Cecconi M, De Backer D, et al. Current practice and evolving concepts in septic shock resuscitation. Intensive Care Med. 2022;48(2):148-163. https://doi.org/10.1007/s00134-021-06595-9.
  4. Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66. https://doi.org/10.1186/s13613-018-0402-x.
  5. Vincent JL, Cecconi M, De Backer D. The fluid challenge. Crit Care. 2020;24(1):703. https://doi.org/10.1186/s13054-020-03443-y.
  6. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412-1420. https://doi.org/10.1097/CCM.0b013e318275cece.
  7. Monnet X, Teboul JL. My patient has received fluid. How to assess its efficacy and side effects?. Ann Intensive Care. 2018;8(1):54. https://doi.org/10.1186/s13613-018-0400-z.
  8. Vincent JL, Singer M, Einav S, Moreno R, Wendon J, Teboul JL, et al. Equilibrating SSC guidelines with individualized care. Crit Care. 2021;25(1):397. https://doi.org/10.1186/s13054-021-03813-0.
  9. Monge García MI, Santos A. Understanding ventriculo-arterial coupling. Ann Transl Med. 2020;8(12):795. https://doi.org/10.21037/atm.2020.04.10.
  10. Pinsky MR, Guarracino F. How to assess ventriculoarterial coupling in sepsis. Curr Opin Crit Care. 2020;26(3):313-318. https://doi.org/10.1097/MCC.0000000000000721.
  11. Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock. Crit Care. 2019;23(1):118. https://doi.org/10.1186/s13054-019-2414-9.
  12. Li S, Wan X, Laudanski K, He P, Yang L. Left-Sided Ventricular-arterial Coupling and Volume Responsiveness in Septic Shock Patients. Shock. 2019;52(6):577-582. https://doi.org/10.1097/SHK.0000000000001327.
  13. Zhou X, Pan J, Wang Y, Wang H, Xu Z, Zhuo W. Left ventricular-arterial coupling as a predictor of stroke volume response to norepinephrine in septic shock - a prospective cohort study. BMC Anesthesiol. 2021;21(1):56. https://doi.org/10.1186/s12871-021-01276-y.
  14. Alvarado Sánchez JI, Caicedo Ruiz JD, Diaztagle Fernández JJ, Ospina Tascon GA, Monge García MI, Ruiz Narváez GA, Cruz Martínez LE. Changes of operative performance of pulse pressure variation as a predictor of fluid responsiveness in endotoxin shock. Sci Rep. 2022;12(1):2590. https://doi.org/10.1038/s41598-022-06488-x.
  15. Hatib F, Jansen JR, Pinsky MR. Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol (1985). 2011;111(3):853-860. https://doi.org/10.1152/japplphysiol.00066.2011.
  16. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983;245:H773-780. https://doi.org/10.1152/ajpheart.1983.245.5.H773.
  17. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86(2):513-521. https://doi.org/10.1161/01.cir.86.2.513.
  18. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 2001;38(7):2028-2034. https://doi.org/10.1016/s0735-1097(01)01651-5.
  19. Monge García MI, Santos A, Diez Del Corral B, Guijo González P, et al. Noradrenaline modifies arterial reflection phenomena and left ventricular efficiency in septic shock patients: A prospective observational study. J Crit Care 2018;47:280-286. https://doi.org/10.1016/j.jcrc.2018.07.027.
  20. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V, Lancellotti P, Lekakis J, Mohty D, Nihoyannopoulos P, Parissis J, Rizzoni D, Ruschitzka F, Seferovic P, Stabile E, Tousoulis D, Vinereanu D, Vlachopoulos C, Vlastos D, Xaplanteris P, Zimlichman R, Metra M. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21(4):402-424. https://doi.org/10.1002/ejhf.1436.
  21. Huette P, Abou-Arab O, Longrois D, Guinot PG. Fluid expansion improve ventriculo-arterial coupling in preload-dependent patients: a prospective observational study. BMC Anesthesiol. 2020;20(1):171. https://doi.org/10.1186/s12871-020-01087-7.
  22. Guarracino F, Ferro B, Morelli A, Bertini P, et al. Ventriculoarterial decoupling in human septic shock. Crit Care. 2014;18(2):R80. https://doi.org/10.1186/cc13842.
  23. Claude M, Medam S, Antonini F, Alingrin J, Haddam M, Hammad E, Meyssignac B, Vigne C, Zieleskiewicz L, Leone M. Norepinephrine: Not too much, too long. Shock. 2015;44(4):305-309. https://doi.org/10.1097/SHK.0000000000000426.
  24. Roberts RJ, Miano TA, Hammond DA, Patel GP, Chen JT, Phillips KM, Lopez N, Kashani K, Qadir N, Cairns CB, Mathews K, Park P, Khan A, Gilmore JF, Brown ART, Tsuei B, Handzel M, Chang AL, Duggal A, Lanspa M, Herbert JT, Martinez A, Tonna J, et al. Evaluation of Vasopressor Exposure and Mortality in Patients With Septic Shock. Crit Care Med. 2020;48(10):1445-1453. https://doi.org/10.1097/CCM.0000000000004476.
  25. Chowdhury SM, Butts RJ, Taylor CL, Bandisode VM, Chessa KS, Hlavacek AM, Shirali GS, Baker GH. Validation of Noninvasive Measures of Left Ventricular Mechanics in Children: A Simultaneous Echocardiographic and Conductance Catheterization Study. J Am Soc Echocardiogr. 2016;29(7):640-647. https://doi.org/10.1016/j.echo.2016.02.016.
Sistema OJS 3.4.0.5 - Metabiblioteca |