Skip to main navigation menu Skip to main content Skip to site footer

Fetal cardiac remodeling in preeclampsia and fetal growth restriction: a long-term cardiovascular risk

Reprogramación cardiaca fetal en preeclampsia y restricción de crecimiento fetal: un riesgo cardiovascular a largo plazo



Open | Download


Section
Review Articles

How to Cite
Sarzosa Romero, J. A., Muñoz Ramírez, C. J., Ortiz Martínez, R. A., & Castro, J. A. (2025). Fetal cardiac remodeling in preeclampsia and fetal growth restriction: a long-term cardiovascular risk. Journal of Medicine and Surgery Repertoire. https://doi.org/10.31260/RepertMedCir.01217372.1422

Dimensions
PlumX
Citations
license

   


Johanna Andrea Sarzosa Romero,

Residente de Ginecología y Obstetricia, Universidad del Cauca, Popayán.


Javier Andrés Castro,

Docente Universidad del  Cauca, Popayán.



##plugins.themes.bootstrap3.displayStats.noStats##

Introduction: the fetal period is characterized by rapid cell proliferation and differentiation that can lead to changes in normal organ function. Heart structural and functional modifications occur in restricted fetuses, and may persist until childhood and adolescence, and predispose to cardiovascular diseases. Objective: to conduct a literature search to determine the relationship between cardiac remodeling in restricted fetuses and offsprings of preeclamptic mothers, and its association with cardiovascular risk. Methodology: a search performed from December 2020 to June 2021 in PubMed, Scielo, Lilacs, Ovid, Embase, ScienceDirect and Medline databases using Mesh validation keywords. Results: 36 articles were selected, finding there are fetal cardiac structural and functional changes in restricted fetuses, as those occurring in offsprings of preeclamptic mothers. Elongated and globular hearts are seen in the initial phase, featuring higher sphericity indices that may progress to hypertrophy, and signs of both systolic and diastolic cardiac dysfunction, corroborated by elevated umbilical cord blood troponin and natriuretic peptide levels, as compared with healthy fetuses. Cardiac changes persist until childhood, adolescence and adulthood. Conclusion: preeclampsia and fetal growth restriction induce cardiac remodeling in utero, leading to cardiovascular risk factors. Initiating preventive actions is crucial to prevent extrauterine life factors (“second hit”) from increasing the risk of developing cardiovascular disease or death.


Article visits 183 | PDF visits 33


Downloads

Download data is not yet available.
  1. Youssef L, Miranda J, Paules C, Garcia-Otero L, Vellvé K, Kalapotharakos G, et al. Fetal cardiac remodeling and dysfunction is associated with both preeclampsia and fetal growth restriction. Am J Obstet Gynecol. 2020;222(1):79.e1–79.e9. http://dx.doi.org/10.1016/j.ajog.2019.07.025
  2. Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet Gynecol. 2021;137(2):e16–28. http://dx.doi.org/10.1097/AOG.0000000000004251
  3. Marasciulo F, Orabona R, Fratelli N, Fichera A, Valcamonico A, Ferrari F, et al. Preeclampsia and late fetal growth restriction. Minerva Obstet Gynecol. 2021;73(4):435–41. http://dx.doi.org/10.23736/S2724-606X.21.04809-7
  4. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–89. Available from: http://dx.doi.org/10.1038/s41581-019-0119-6
  5. Staff AC. The two-stage placental model of preeclampsia: An update. J Reprod Immunol. 2019;134-135:1–10. http://dx.doi.org/10.1016/j.jri.2019.07.004
  6. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301(6746):259-62. http://dx.doi.org/10.1136/bmj.301.6746.259
  7. Xiong X, Demianczuk NN, Saunders LD, Wang FL, Fraser WD. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol. 2002;155(3):203-9. http://dx.doi.org/10.1093/aje/155.3.203
  8. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. http://dx.doi.org/10.1016/j.jacc.2020.11.010
  9. Li Z, Lin L, Wu H, Yan L, Wang H, Yang H, et al. Global, Regional, and National Death, and Disability-Adjusted Life-Years (DALYs) for Cardiovascular Disease in 2017 and Trends and Risk Analysis From 1990 to 2017 Using the Global Burden of Disease Study and Implications for Prevention. Front Public Health. 2021;9:559751. http://dx.doi.org/10.3389/fpubh.2021.559751
  10. Crispi F, Crovetto F, Gratacos E. Intrauterine growth restriction and later cardiovascular function. Early Hum Dev. 2018;126:23–7. http://dx.doi.org/10.1016/j.earlhumdev.2018.08.013
  11. Masoumy EP, Sawyer AA, Sharma S, Patel JA, Gordon PMK, Regnault TRH, et al. The lifelong impact of fetal growth restriction on cardiac development. Pediatr Res. 2018;84(4):537–44. http://dx.doi.org/10.1038/s41390-018-0069-x
  12. Crispi F, Sepúlveda-Martínez Á, Crovetto F, Gómez O, Bijnens B, Gratacós E. Main Patterns of Fetal Cardiac Remodeling. Fetal Diagn Ther. 2020;47(5):337–44. http://dx.doi.org/10.1159/000506047
  13. Ryznar RJ, Phibbs L, Van Winkle LJ. Epigenetic Modifications at the Center of the Barker Hypothesis and Their Transgenerational Implications. Int J Environ Res Public Health. 2021;18(23). http://dx.doi.org/10.3390/ijerph182312728
  14. Visentin S, Grumolato F, Nardelli GB, Di Camillo B, Grisan E, Cosmi E. Early origins of adult disease: low birth weight and vascular remodeling. Atherosclerosis. 2014;237(2):391–9. http://dx.doi.org/10.1016/j.atherosclerosis.2014.09.027
  15. Garduño-Espinosa J, Ávila-Montiel D, Quezada-García AG, Merelo-Arias CA, Torres-Rodríguez V, Muñoz-Hernández O. Obesity and thrifty genotype. Biological and social determinism versus free will. Bol Med Hosp Infant Mex. 2019;76(3):106–12. http://dx.doi.org/10.24875/BMHIM.19000159
  16. Hobbins JC, Gumina DL, Zaretsky MV, Driver C, Wilcox A, DeVore GR. Size and shape of the four-chamber view of the fetal heart in fetuses with an estimated fetal weight less than the tenth centile. Am J Obstet Gynecol. 2019;221(5):495.e1–495.e9. http://dx.doi.org/10.1016/j.ajog.2019.06.008
  17. Rizzo G, Mattioli C, Mappa I, Bitsadze V, Khizroeva J, Słodki M, et al. Hemodynamic factors associated with fetal cardiac remodeling in late fetal growth restriction: a prospective study. J Perinat Med. 2019;47(7):683–8. http://dx.doi.org/10.1515/jpm-2019-0217
  18. Oliveira M, Dias JP, Guedes-Martins L. Fetal Cardiac Function: Myocardial Performance Index. Curr Cardiol Rev. 2022;18(4):e271221199505. http://dx.doi.org/10.2174/1573403X18666211227145856
  19. Zhang L, Han J, Zhang N, Li Z, Wang J, Xuan Y, et al. Assessment of fetal modified myocardial performance index in early-onset and late-onset fetal growth restriction. Echocardiography. 2019;36(6):1159–64. http://dx.doi.org/10.1111/echo.14364
  20. Öcal DF, Yakut K, Öztürk FH, Öztürk M, Oğuz Y, Altınboğa O, et al. Utility of the modified myocardial performance index in growth-restricted fetuses. Echocardiography. 2019;36(10):1895–900. http://dx.doi.org/10.1111/echo.14489
  21. Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term. Ultrasound Obstet Gynecol. 2019;53(5):655–62. http://dx.doi.org/10.1002/uog.19193
  22. Crispi F, Bijnens B, Sepulveda-Swatson E, Cruz-Lemini M, Rojas-Benavente J, Gonzalez-Tendero A, et al. Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging. 2014;7(5):781–7. http://dx.doi.org/10.1161/CIRCIMAGING.113.001490
  23. Semmler J, Garcia-Gonzalez C, Sanchez Sierra A, Gallardo Arozena M, Nicolaides KH, Charakida M. Fetal cardiac function at 35-37 weeks’ gestation in pregnancies that subsequently develop pre-eclampsia. Ultrasound Obstet Gynecol. 2021;57(3):417–22. http://dx.doi.org/10.1002/uog.23521
  24. Yang F, Janszky I, Gissler M, Roos N, Wikström AK, Yu Y, et al. Association of Maternal Preeclampsia With Offspring Risks of Ischemic Heart Disease and Stroke in Nordic Countries. JAMA Netw Open. 2022;5(11):e2242064. http://dx.doi.org/10.1001/jamanetworkopen.2022.42064
  25. Sebastiani G, García-Beltran C, Pie S, Guerra A, López-Bermejo A, de Toledo JS, et al. The sequence of prenatal growth restraint and postnatal catch-up growth: normal heart but thicker intima-media and more pre-peritoneal fat in late infancy. Pediatr Obes. 2019;14(3):e12476. http://dx.doi.org/10.1111/ijpo.12476
  26. Olander RFW, Sundholm JKM, Ojala TH, Andersson S, Sarkola T. Differences in cardiac geometry in relation to body size among neonates with abnormal prenatal growth and body size at birth. Ultrasound Obstet Gynecol. 2020;56(6):864–71. http://dx.doi.org/10.1002/uog.21972
  27. Olander RFW, Litwin L, Sundholm JKM, Sarkola T. Childhood cardiovascular morphology and function following abnormal fetal growth. Heart Vessels. 2022;37(9):1618–27. http://dx.doi.org/10.1007/s00380-022-02064-5
  28. Chen H, Gong Y, Sun F, Han B, Zhou B, Fan J, et al. Myocardial Function in Offspring Aged 5 to 8 Years of Pregnancy Complicated by Severe Preeclampsia Measured by Two-Dimensional Speckle-Tracking Echocardiography. Front Physiol. 2021;12:643926. http://dx.doi.org/10.3389/fphys.2021.643926
  29. Glenn A, Trout AT, Kocaoglu M, Ata NA, Crotty EJ, Tkach JA, et al. Patient- and Examination-Related Predictors of 3D MRCP Image Quality in Children. AJR Am J Roentgenol. 2022;218(5):910–6. http://dx.doi.org/10.2214/AJR.21.26954
  30. Nilsson PM, Ostergren PO, Nyberg P, Söderström M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149378 Swedish boys. J Hypertens [Internet]. 1997 Dec;15(12 Pt 2):1627–31. Available from: http://dx.doi.org/10.1097/00004872-199715120-00064
  31. Flores-Guillén E, Ochoa-Díaz-López H, Castro-Quezada I, Irecta-Nájera CA, Cruz M, Meneses ME, et al. Intrauterine growth restriction and overweight, obesity, and stunting in adolescents of indigenous communities of Chiapas, Mexico. Eur J Clin Nutr. 2020;74(1):149–57. http://dx.doi.org/10.1038/s41430-019-0440-y
  32. Bjarnegård N, Morsing E, Cinthio M, Länne T, Brodszki J. Cardiovascular function in adulthood following intrauterine growth restriction with abnormal fetal blood flow. Ultrasound Obstet Gynecol. 2013;41(2):177–84. http://dx.doi.org/10.1002/uog.12314
  33. Armengaud JB, Yzydorczyk C, Siddeek B, Peyter AC, Simeoni U. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol. 2021;99:168–76. http://dx.doi.org/10.1016/j.reprotox.2020.10.005
  34. de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement From the American Heart Association. Circulation. 2019;139(13):e603–34. http://dx.doi.org/10.1161/CIR.0000000000000618
  35. Youssef L, Castellani R, Valenzuela-Alcaraz B, Sepulveda-Martinez Á, Crovetto F, Crispi F. Cardiac remodeling from the fetus to adulthood. J Clin Ultrasound. 2023;51(2):249–64. http://dx.doi.org/10.1002/jcu.23336
  36. Rodriguez-Lopez M, Osorio L, Acosta-Rojas R, Figueras J, Cruz-Lemini M, Figueras F, et al. Influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction. Pediatr Res. 2016;79(1-1):100–6. http://dx.doi.org/10.1038/pr.2015.182
Sistema OJS 3.4.0.5 - Metabiblioteca | Fusion Solutions Ecuador