Bone mineral density and central adiposity in premenopausal women with overweight and obesity

Densidad mineral ósea y adiposidad central en premenopáusicas con sobrepeso y obesidad

Main Article Content

Jorly Mejía-Montilla
Carmen Naranjo-Rodríguez
Delia Noriega-Verdugo
María Olivera-Cardozo
Viorkis Pérez-Ortíz
Aimee Piñón-Gómez
Eduardo Reyna-Villasmil

Abstract

Objective: to investigate the relationship between bone mineral density and central adiposity in premenopausal women with overweight and obesity. Methods: 204 patients were selected who were assigned in three groups according to the body mass index (BMI): group A (lower BMI 25 k / m2, normal weight - controls), group B (BMI between 25 and 30 k / m2, overweight) and group C (BMI greater than 30 k / m2, obesity). The general characteristics, bone mineral density and central adiposity (thickness of preperitoneal, subcutaneous and visceral adipose tissue) were evaluated. Results: participants were assigned in groups A (n = 71), B (n = 67) and C (n = 66). There were no significant differences between the groups in relation to age, age of menarche and height (p = ns). The A presented lower values ​​of bone mineral density in lumbar and total body compared with those of groups B and C (p <0.0001). The thickness values ​​of preperitoneal, subcutaneous and visceral adipose tissue in groups C and B presented higher values ​​compared to A (p <0.0001). Bone mineral density in lumbar and total body showed significant, positive and moderate correlations with all parameters of central adiposity (p <0.05). Conclusion: there is a positive relationship between bone mineral density and central adiposity in premenopausal women with overweight and obesity.

Keywords:

Downloads

Download data is not yet available.

Article Details

References

1. Salimzadeh A, Abolhasani M, Sedaghattalab M, Moghadasi M. Relationship between bone density and abdominal visceral fat in premenopausal overweight and obese Iranian women aged 30-50 years. Int J Rheum Dis. 2017;20(5):555-560. doi: 10.1111/1756-185X.12400.
2. Zhang H, Chai X, Li S, Zhang Z, Yuan L, Xie H, Zhou H, Wu X, Sheng Z, Liao E. Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine. 2013;43(3):643-50. doi: 10.1007/s12020-012-9833-6.
3. Ho SC, Chan SG, Yip YB, Chan CS, Woo JL, Sham A. Change in bone mineral density and its determinants in pre- and perimenopausal Chinese women: the Hong Kong Perimenopausal Women Osteoporosis Study. Osteoporos Int. 2008;19(12):1785-96. doi: 10.1007/s00198-008-0614-2.
4. Xiang BY, Huang W, Zhou GQ, Hu N, Chen H, Chen C. Body mass index and the risk of low bone mass-related fractures in women compared with men: A PRISMA-compliant meta-analysis of prospective cohort studies. Medicine (Baltimore). 2017;96(12):e5290. doi: 10.1097/MD.0000000000005290
5. Liu S, Li J, Sheng Z, Wu X, Liao E. Relationship between body composition and age, menopause and its effects on bone mineral density at segmental regions in Central Southern Chinese postmenopausal elderly women with and without osteoporosis. Arch Gerontol Geriatr. 2011;53(2):e192-7. doi: 10.1016/j.archger.2010.09.002.
6. Shao HD, Li GW, Liu Y, Qiu YY, Yao JH, Tang GY. Contributions of fat mass and fat distribution to hip bone strength in healthy postmenopausal Chinese women. J Bone Miner Metab. 2015;33(5):507-15. doi: 10.1007/s00774-014-0613-7.
7. López-Gómez JJ, Pérez Castrillón JL, de Luis Román DA. Impact of obesity on bone metabolism. Endocrinol Nutr. 2016;63(10):551-559. doi: 10.1007/s00774-014-0613-7.
8. Farr JN, Funk JL, Chen Z, Lisse JR, Blew RM, Lee VR, Laudermilk M, Lohman TG, Going SB. Skeletal muscle fat content is inversely associated with bone strength in young girls. J Bone Miner Res. 2011;26(9):2217-25. doi: 10.1002/jbmr.414.
9. Kim IJ, Kang KY. Low Skeletal Muscle Mass is Associated with the Risk of Low Bone Mineral Density in Urban Dwelling Premenopausal Women. Calcif Tissue Int. 2017;101(6):581-592. doi: 10.1007/s00223-017-0314-z.
10. Vlachos IS, Hatziioannou A, Perelas A, Perrea DN. Sonographic assessment of regional adiposity. AJR Am J Roentgenol. 2007;189(6):1545-53.
11. Roever LS, Resende ES, Diniz AL, Penha-Silva N, Veloso FC, Casella-Filho A, Dourado PM, Chagas AC. Abdominal Obesity and Association With Atherosclerosis Risk Factors: The Uberlândia Heart Study. Medicine (Baltimore). 2016;95(11):e1357. doi: 10.1097/MD.0000000000001357.
12. Rydén M, Arner P. Subcutaneous Adipocyte Lipolysis Contributes to Circulating Lipid Levels. Arterioscler Thromb Vasc Biol. 2017;37(9):1782-1787. doi: 10.1161/ATVBAHA.117.309759.
13. Salazar MR, Carbajal HA, Espeche WG, Aizpurúa M, Maciel PM, Reaven GM. Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. Am J Med. 2014;127(2):152-7. doi: 10.1016/j.amjmed.2013.10.012.
14. Raška I Jr, Rašková M, Zikán V, Škrha J. Body composition is associated with bone and glucose metabolism in postmenopausal women with type 2 diabetes mellitus. Physiol Res. 2017;66(1):99-111.
15. Huang JS, Rietschel P, Hadigan CM, Rosenthal DI, Grinspoon S. Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS. 2001;15(8):975-82.
16. Katzmarzyk PT, Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Gimble JM. Relationship between abdominal fat and bone mineral density in white and African American adults. Bone. 2012;50(2):576-9. doi: 10.1016/j.bone.2011.04.012.
17. Xue P, Gao P, Li Y. The association between metabolic syndrome and bone mineral density: a meta-analysis. Endocrine. 2012;42:546-54. doi: 10.1007/s12020-012-9684-1
18. Yerges-Armstrong LM, Miljkovic I, Cauley JA, Sheu Y, Gordon CL, Wheeler VW, Bunker CH, Patrick AL, Zmuda JM. Adipose tissue and volumetric bone mineral density of older Afro-Caribbean men. J Bone Miner Res. 2010;25(10):2221-8. doi: 10.1002/jbmr.107
19. Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JA. Exercise and bone mass in adults. Sports Med. 2009;39(6):439-68. doi: 10.2165/00007256-200939060-00002.
20. Puntus T, Schneider B, Meran J, Peterlik M, Kudlacek S. Influence of age and gender on associations of body mass index with bone mineral density, bone turnover markers and circulating calcium-regulating and bone-active sex hormones. Bone. 2011;49(4):824-9. doi: 10.1016/j.bone.2011.06.003.
21. Morcov C, Vulpoi C, Brănişteanu D. Correlation between adiponectin, leptin, insulin growth factor-1 and bone mineral density in pre and postmenopausal women. Rev Med Chir Soc Med Nat Iasi. 2012;116(3):785-9.
22. Tanna N, Patel K, Moore AE, Dulnoan D, Edwards S, Hampson G. The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women. J Endocrinol Invest. 2017;40(12):1345-1353. doi: 10.1007/s40618-017-0711-1.
23. Naot D, Musson DS, Cornish J. The Activity of Adiponectin in Bone. Calcif Tissue Int. 2017;100(5):486-499. doi: 10.1007/s00223-016-0216-5.
24. Dalskov SM, Ritz C, Larnkjær A, Damsgaard CT, Petersen RA, Sørensen LB, Ong KK, Astrup A, Mølgaard C, Michaelsen KF. The role of leptin and other hormones related to bone metabolism and appetite regulation as determinants of gain in body fat and fat-free mass in 8-11-year-old children. J Clin Endocrinol Metab. 2015;100(3):1196-205. doi: 10.1210/jc.2014-3706.
25. Riddle RC, Frey JL, Tomlinson RE, Ferron M, Li Y, DiGirolamo DJ, Faugere MC, Hussain MA, Karsenty G, Clemens TL. Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol Cell Biol. 2014;34(10):1850-62. doi: 10.1128/MCB.00075-14
26. Zeidan ZA, Sultan IE, Guraya SS, Al-Zalabani AH, Khoshhal KI. Low bone mineral density among young healthy adult Saudi women. Prevalence and associated factors in the age group of 20 to 36 years. Saudi Med J. 2016;37(11):1225-1233. doi: 10.15537/smj.2016.11.16248.
27. Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses SA. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int. 2011;22(2):635-45. doi: 10.1007/s00198-010-1305-3.
28. Francis P, McCormack W, Caseley A, Copeman J, Jones G. Body composition changes in an endurance athlete using two different training strategies. J Sports Med Phys Fitness. 2017;57(6):811-815. doi: 10.23736/S0022-4707.16.06365-9.
29. Kim SH, Moon JY, Sasano H, Choi MH, Park MJ. Body Fat Mass Is Associated With Ratio of Steroid Metabolites Reflecting 17,20-Lyase Activity in Prepubertal Girls. J Clin Endocrinol Metab. 2016;101(12):4653-4660.

Citado por