Fractal and Euclidean geometric differentiation of normal and restenosed arteries. Mathematical arterial harmony

Diferenciación geométrica fractal y euclidiana de arterias normales y reestenosadas. Armonía matemática arterial

Main Article Content

Javier Rodríguez Velásquez
Signed Prieto Bohórquez
Fernando Polo Nieto
Catalina Correa Herrera
Yolanda Soracipa Muñoz
Vanessa Blanco
Andrés Camilo Rodríguez

Abstract

Background: a methodology was developed that differentiates normality of coronary restenosis in a model of experimentation with porcine, based on fractal geometry and the concept of intrinsic mathematical harmony (AMI). Objective: to develop a methodology that allows the mathematical differentiation of normal and restenosed arteries through the simultaneous application of Euclidean and fractal geometry. Materials and methods: images of histological plaques of three normal and three restenosed arteries were measured, calculating the fractal dimension by means of the box-counting method of three islands delimited by the arterial layers and then the AMI was calculated; At the same time, the number of squares occupying the surface of the three defined islands was calculated and differences were established between groups. Results: the fractal dimension of the normal arteries was between 1.0184 and 1.2578 and in the restenosed ones between 0.6881 and 1.1651; the values ​​of the number of squares occupied by the surface of the arteries oscillated between 34 and 76 for the normal arteries and for the restenosed ones between 91 and 162, thus the islands of the normal arteries always had occupation values ​​less than 100, while the restenosadas always presented a greater or equal value in at least one of their islands. Conclusions: a fractal and Euclidean mathematical self-organization of the arterial restenosis process was revealed, which allows to establish differences between these states, quantifying the progress of arterial occlusion. Abbreviations: AMI, intrinsic mathematical harmony; EAC, coronary artery disease.

Keywords:

Downloads

Download data is not yet available.

Article Details

References

1. Bassingthwaighte J, Liebovitch L, West B. Fractal Physiology. New York: Oxford University Press; 1994.

2. West JW. Fractal physiology and chaos in medicine. Singapore: World Scientific; 1990.

3. Mandelbrot B. Introducción. En: Mandelbrot B. Los Objetos Fractales. Barcelona: Tusquets Eds; 2000.p.13-26.

4. Mandelbrot B. How long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science. 1967; 156 (3775): 636-38.

5. Peitgen O, Jürgens H, Dietmar S. Classical fractals and self similarity. In: Chaos and fractals: new frontiers of science. New York: Springer-Verlag; 1992. p. 63-132.

6. Mandelbrot B. The Fractal Geometry of Nature. San Francisco: Freeman; 1972. p. 341-48.

7. Peitgen O, Jürgens H, Dietmar S. Limits and self similarity. In: Chaos and fractals: new frontiers of science. New York: Springer-Verlag; 1992. p. 135-82.

8. Peitgen O, Jürgens H, Dietmar S. Length área and dimensión. Measuring complexity and scalling properties. In: Chaos and Fractals. New frontiers of science. New York: Springer-Verlag; 1992. p. 183-228.

9. Pohlman S, Powell K, Obuchowski N A. Quantitative classification of breast tumors in digitized mammograms. Med. Phys. 1996 Aug; 23: 1337-45.

10. Lefebvre F, Benali H. A fractal approach to the segmentation of microcalcifications in digital mammograms. Med. Phys. 1995 Apr; 22(4): 381-90.

11. Huikuri HV, Makikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infartion. Circulation. 2000 Jun; 101(1): 47-53.

12. Rodríguez J, Marino M, Avilan N, Echeverri D. Medidas fractales de arterias coronarias, un modelo experimental en reestenosis armonía matemática intrínseca de la estructura arterial. Rev. Col. Cardiología. 2002 Sep; 10: 65-72.

13. Rodríguez J. Mathematical law of chaotic cardiac dynamics: Predictions for clinical application. J Medicine & Med. Sci. 2011 Aug; 2(8): 1050-9.

14. Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A, et al. Geometric diagnosis of erythrocyte morphophysiology: Geometric diagnosis of erythrocyte. JMMS. 2012 Oct; 3(11): 715-20.

15. GoeSalud. Enfermedades de las arterias Coronarias preguntas frecuentes [monografía en Internet]. San José, Costa Rica: Geosalud [citado 29 abr 2014]. Disponible en: http://geosalud.com/Enfermedades%20Cardiovasculares/arteriascoronarias.htm.

16. Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010;10:1.

17. Lafont A, Topol EJ. Experimental evidence of remodeling after angioplasty. In: Arterial remodeling: a critical factor in restenosis. Boston, Mass: Kluwer Academic Publishers; 1997. p. 51-68.

18. Goldberger A, Rigney D, West B. Chaos and fractals in human physiology. Sci Am. 1990 Feb; 262:42-9.

19. Goldberger A, Amaral L, Hausdorff J, Ivanov P, Peng C, Stanley H. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA.2002; 99(suppl1): 2466–72.

20. Cheng SC, Huang YM. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans Inf Technol Biomed. 2003 Sep; 7(3):163-70.

21. Sankar D, Thomas T. A new fast fractal modeling approach for the detection of microcalcifications in mammograms. J Digit Imaging. 2010 Oct; 23(5): 538-46.

22. Stępień R, Stępień P. Analysis of contours of tumor masses in mammograms by Higuchi’s fractal dimension. Biocybern Biomed Eng. 2010; 30(4): 49–56.

23. Vasiljevic J, Reljin B, Sopta J, Mijucic V, Tulic G, Reljin I. Application of multifractal analysis on microscopic images in the classification of metastatic bone disease. Biomed Microdevices. 2012 jun; 14:541-48.

24. Stehlík M, Mrkvička T, Filus J, Filus L. Recent developments on testing in cáncer risk: a fractal and stochastic geometry. J Reliability Stat Stud. 2012 Apr; 5:83-95.

25. Rodríguez J, Prieto S, Correa C, Posso H, Bernal P, Vitery S, et al. Generalización fractal de células preneoplásicas y cancerígenas del epitelio escamoso cervical. Una nueva metodología de aplicación clínica. Rev Fac Med. 2010 Jul-Dic; 18 (2) 33-41.

26. Rodríguez J. Entropía proporcional de los sistemas dinámicos cardiacos: predicciones físicas y matemáticas de la dinámica cardiaca de aplicación clínica. Rev Colomb Cardiol. 2010 May-Jun;17:115-129.

Citado por