Isquemia arterial bilateral espontánea de extremidades inferiores por COVID-19 leve
Spontaneous bilateral lower limb arterial ischemia due to mild COVID-19
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Mostrar biografía de los autores
Introducción: la infección por COVID-19 ocasiona neumonía como parte del síndrome respiratorio agudo severo Coronavirus 2 (SARS-CoV-2), abarca desde la enfermedad asintomática y leve hasta una condición crítica y grave, mediada por una respuesta inmune disregulada. Presentación del caso: paciente masculino de 47 años procedente del área urbana sin antecedentes de importancia. Acudió a la sala de urgencias de un centro hospitalario refiriendo dolor en miembros inferiores de 3 días de evolución. Manifestó que en días previos presentó sintomatología respiratoria leve. Se tomó prueba para SARS-CoV-2 con resultado positivo. Se practicó dúplex arterial de miembros inferiores que mostró adecuado flujo sanguíneo con obstrucción completa en partes distales. Discusión y conclusiones: se reporta el caso de un paciente con COVID-19 leve que sufrió isquemia arterial espontánea en los miembros inferiores con requerimiento de amputación. Se enfatiza en las presuntas teorías como la inmunotrombosis y la disfunción endotelial que expliquen los mecanismos causantes de esta complicación.
Visitas del artículo 462 | Visitas PDF 224
Descargas
- Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ [Internet]. 2020;368, m1091. Disponible en: 10.1136/bmj.m1091
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA [Internet]. 2020; Disponible en: 10.1001/jama.2020.1585
- Y. Rodríguez, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID- 19. J Autoimmun [Internet]. 114 (2020) 102506. Disponible en: https://doi.org/10.1016/j.jaut.2020.102506
- Wu Z, Mcgoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020;323:1239.
- Y. Zuo, S. Yalavarthi, H. Shi, K. Gockman, M. Zuo, J.A. Madison, C. Blair,, A. Weber, B.J. Barnes, M. Egeblad, R.J. Woods, Y. Kanthi, J.S. Knight. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. MedRxiv [Internet]. 2020; Disponible en: https://doi.org/10.1101/2020.04.09.20059626 In press
- N. Sethuraman, S.S. Jeremiah, A. Ryo. Interpreting diagnostic tests for SARS-CoV- 2. J Am Med Assoc [Internet]. 323 (22) (2020) 2249-2251. Disponible en: https://doi.org/10.1001/jama. 2020.8259 In press
- M.Z. Tay, C.M. Poh, L. Rénia, P.A. MacAry, L.F.P. Ng. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol [Internet]. 20 (2020) 363-374. Disponible en: https://doi.org/10.1038/s41577-020-0311-8 In press.
- Q.-X. Long, B.-Z. Liu, H.-J. Deng, G.-C. Wu, K. Deng, Y.-K. Chen, P. Liao, J.-F. Qiu, Y. Lin, X.-F. Cai, D.-Q. Wang, Y. Hu, J.-H. Ren, N. Tang, Y.-Y. Xu, L.-H. Yu, Z. Mo, F. Gong, X.-L. Zhang, W.-G. Tian, L. Hu, X.-X. Zhang, J.-L. Xiang, H.-X. Du, H.-, W. Liu, C.-H. Lang, X.-H. Luo, S.-B. Wu, X.-P. Cui, Z. Zhou, M.-M. Zhu, J. Wang, C.-, J. Xue, X.-F. Li, L. Wang, Z.-J. Li, K. Wang, C.-C. Niu, Q.-J. Yang, X.-J. Tang, Y. Zhang, X.-M. Liu, J.-J. Li, D.-C. Zhang, F. Zhang, P. Liu, J. Yuan, Q. Li, J.-L. Hu, et al. Antibody responses to SARS-CoV-2 in patients with COVID- 19. Nat Med [Internet]. 2020; Disponible en: https://doi.org/10.1038/s41591-020-0897-1 In press.
- S.Q. Du, W. Yuan. Mathematical modeling of interaction between innate and adaptive immune responses in COVID‐19 and implications for viral pathogenesis. J Med Virol [Internet]. 2020; Disponible en: https://doi.org/10.1002/jmv.25866 In press jmv.25866
- Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D. L., Van Tassell, B. W., Dentali, F., Montecucco, F., Massberg, S., Levi, M., & Abbate, A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5), 319-329.
- Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;24;5(1):293.
- Iba, T., Levy, J. H., Levi, M., Connors, J. M. & Thachil, J. Coagulopathy of coronavirus disease 2019. Crit Care Med. 2020;48, 1358-1364.
- Kaur P, Qaqa F, Ramahi A, Shamoon Y, Singhal M, Shamoon F, Maroules M, Singh B. Acute upper limb ischemia in a patient with COVID-19. Hematol Oncol Stem Cell Ther. 2020;13:S1658-3876(20)30096-0.
- Xiong M, Liang X, Wei YD. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID‐19): a meta‐analysis. Br J Haematol. 2020;189: 1050-1052.
- Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost [Internet]. 2020;18: 1421-1424. Disponible en: https://doi.org/10.1111/jth.14830
- Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers, DAMPJ, Kant KM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:148-150.
- Liwinski, T., Zheng, D. & Elinav, E. The microbiome and cytosolic innate immune receptors. Immunol Rev [Internet]. 2020; Disponible en: https://doi.org/10.1111/imr.12901
- Toldo, S., Bussani, R., Nuzzi, V., Bonaventura, A., Mauro, A. G., Cannatà, A., Pillappa, R., Sinagra, G., Nana-Sinkam, P., Sime, P., & Abbate, A. Inflammasome formation in the lungs of patients with fatal COVID-19. Inflamm Res Off J Eur Histamine Res Soc. 2021;70(1), 7-10.
- Rodrigues, T. S., de Sá, K., Ishimoto, A. Y., Becerra, A., Oliveira, S., Almeida, L., Gonçalves, A. V., Perucello, D. B., Andrade, W. A., Castro, R., Veras, F. P., Toller-Kawahisa, J. E., Nascimento, D. C., de Lima, M., Silva, C., Caetite, D. B., Martins, R. B., Castro, I. A., Pontelli, M. C., de Barros, F. C., Zamboni, D. S. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3), e20201707.
- Goeijenbier, M., van Wissen, M., van de Weg, C., Jong, E., Gerdes, V. E., Meijers, J. C., Brandjes, D. P., & van Gorp, E. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol [Internet]. 2012;84(10), 1680-1696. Disponible en: https://doi.org/10.1002/jmv.23354
- Godo, S. & Shimokawa, H. Endothelial functions. Arter Thromb Vasc Biol. 2017;37, 108-114.
- Sturtzel, C. Endothelial cells. Adv Exp Med Biol. 2017;1003, 71-91.
- Kruger-Genge, A., Blocki, A., Franke, R. P. & Jung, F. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019;20, 4411.
- Escher, R., Breakey, N. & Lammle, B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190, 62.
- Green, S. J. Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect. 2020;22, 149-150.
- Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7, 803-815.
- Akerstrom, S. et al. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 2005;79, 1966-1969.
- Akerstrom, S., Gunalan, V., Keng, C. T., Tan, Y. J. & Mirazimi, A. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology. 2009;395, 1-9.
- Panigada, M. et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18, 1738-1742.
- Ranucci, M. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18, 1747-1751.
- Ciceri, F. et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020;22, 95-97.
- Gattinoni, L., Chiumello, D., Caironi, P., Busana, M., Romitti, F., Brazzi, L., & Camporota, L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6);1099-1102.
- Zuo, Y., Estes, S. K., Ali, R. A., Gandhi, A. A., Yalavarthi, S., Shi, H., Sule, G., Gockman, K., Madison, J. A., Zuo, M., Yadav, V., Wang, J., Woodard, W., Lezak, S. P., Lugogo, N. L., Smith, S. A., Morrissey, J. H., Kanthi, Y., & Knight, J. S. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med [Internet]. 2020;12(570), eabd3876. Disponible en: https://doi.org/10.1126/scitranslmed.abd3876