Anticuerpos inmunomoduladores en el tratamiento del cáncer

Immunomodulatory antibodies for cancer treatment

Contenido principal del artículo

Eduardo Reyna Villasmil

Resumen

Los anticuerpos inmunomoduladores (Aim) tienen la capacidad de modificar el funcionamiento del sistema inmune. Sus efectos sobre los receptores CTLA-4 y PD-1 producen disminución de la activación celular, afectando las acciones de los linfocitos T. La función de ambos receptores es cesar las funciones de las células inmunes autorreactivas que no son destruidas en las estructuras inmunes correspondientes y proteger los tejidos inflamados. Los tumores que expresan estos receptores evitan el reconocimiento por parte de las células inmunes. Los Aim bloquean los receptores y permiten a los linfocitos reconocer y responder ante antígenos neoplásicos. Las investigaciones sobre los fármacos con Aim muestran eficacia moderada en el tratamiento de algunos casos de cáncer en estadios avanzados. El uso combinado de fármacos tiene potenciales efectos sinérgicos con resultados positivos. Aún deben establecerse los posibles indicadores de éxito terapéutico y la posibilidad de reducir los efectos adversos en el uso clínico. El objetivo de esta revisión fue analizar las funciones y utilidad terapéutica de los anticuerpos inmunomoduladores en el tratamiento del cáncer.


 

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

Zhang L, Lu Y. Follow-up Care for Patients Receiving Immune Checkpoint Inhibitors. Asia Pac J Oncol Nurs. 2021;8(6):596-603. doi: 10.4103/apjon.apjon-2129. DOI: https://doi.org/10.4103/apjon.apjon-2129

Papież MA, Krzyściak W. Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci. 2021;22(21):11694. doi: 10.3390/ijms222111694 DOI: https://doi.org/10.3390/ijms222111694

Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153(1):145-52. doi: 10.1016/j.clim.2014.04.010. DOI: https://doi.org/10.1016/j.clim.2014.04.010

Shao Q, Gu J, Zhou J, Wang Q, Li X, Deng Z, Lu L. Tissue Tregs and Maintenance of Tissue Homeostasis. Front Cell Dev Biol. 2021;9:717903. doi: 10.3389/fcell.2021.717903. DOI: https://doi.org/10.3389/fcell.2021.717903

Spurrier MA, Jennings-Gee JE, Daly CA, Haas KM. The PD-1 Regulatory Axis Inhibits T Cell-Independent B Cell Memory Generation and Reactivation. J Immunol. 2021;207(8):1978-1989. doi: 10.4049/jimmunol.2100336. E DOI: https://doi.org/10.4049/jimmunol.2100336

Zhu X, Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017;8(57):97671-97682. doi: 10.18632/oncotarget.18311. DOI: https://doi.org/10.18632/oncotarget.18311

Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv. 2020;6(38):eabd2712. doi: 10.1126/sciadv.abd2712. DOI: https://doi.org/10.1126/sciadv.abd2712

Cai J, Wang D, Zhang G, Guo X. The role Of PD-1/PD-L1 axis in Treg development and function: Implications for cancer immunotherapy. Onco Targets Ther. 2019;12:8437-8445. doi: 10.2147/OTT.S221340. DOI: https://doi.org/10.2147/OTT.S221340

Hu W, Wang G, Wang Y, Riese MJ, You M. Uncoupling therapeutic efficacy from immune-related adverse events in immune checkpoint blockade. iScience. 2020;23(10):101580. doi: 10.1016/j.isci.2020.101580. DOI: https://doi.org/10.1016/j.isci.2020.101580

Durrechou Q, Domblides C, Sionneau B, Lefort F, Quivy A, Ravaud A, Gross-Goupil M, Daste A. Management of immune checkpoint inhibitor toxicities. Cancer Manag Res. 2020;12:9139-9158. doi: 10.2147/CMAR.S218756. DOI: https://doi.org/10.2147/CMAR.S218756

Huang Z, Su W, Lu T, Wang Y, Dong Y, Qin Y, Liu D, Sun L, Jiao W. First-line immune-checkpoint inhibitors in non-small cell lung cancer: Current landscape and future progress. Front Pharmacol. 2020;11:578091. doi: 10.3389/fphar.2020.578091. DOI: https://doi.org/10.3389/fphar.2020.578091

Sławiński G, Wrona A, Dąbrowska-Kugacka A, Raczak G, Lewicka E. Immune checkpoint inhibitors and cardiac toxicity in patients treated for non-small lung cancer: A review. Int J Mol Sci. 2020;21(19):7195. doi: 10.3390/ijms21197195. DOI: https://doi.org/10.3390/ijms21197195

Muto Y, Kitano S, Tsutsumida A, Namikawa K, Takahashi A, Nakamura Y, Yamanaka T, Yamamoto N, Yamazaki N. Investigation of clinical factors associated with longer overall survival in advanced melanoma patients treated with sequential ipilimumab. J Dermatol. 2019;46(6):498-506. doi: 10.1111/1346-8138.14865. DOI: https://doi.org/10.1111/1346-8138.14865

Dalle S, Mortier L, Corrie P, Lotem M, Board R, Arance AM, Meiss F, Terheyden P, Gutzmer R, Buysse B, Oh K, Brokaw J, Le TK, Mathias SD, Scotto J, Lord-Bessen J, Moshyk A, Kotapati S, Middleton MR. Long-term real-world experience with ipilimumab and non-ipilimumab therapies in advanced melanoma: the IMAGE study. BMC Cancer. 2021;21(1):642. doi: 10.1186/s12885-021-08032-y. DOI: https://doi.org/10.1186/s12885-021-08032-y

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-30. DOI: https://doi.org/10.1056/NEJMoa1412082

Govindan R, Szczesna A, Ahn MJ, Schneider CP, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J, Vladimirov V, Fadeeva N, Lee KH, Kurata T, Zhang L, Tamura T, Postmus PE, Jassem J, O'Byrne K, Kopit J, Li M, Tschaika M, Reck M. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 2017;35(30):3449-3457. doi: 10.1200/JCO.2016.71.7629. DOI: https://doi.org/10.1200/JCO.2016.71.7629

Ferrari SM, Fallahi P, Elia G, Ragusa F, Ruffilli I, Patrizio A, Galdiero MR, Baldini E, Ulisse S, Marone G, Antonelli A. Autoimmune Endocrine Dysfunctions Associated with Cancer Immunotherapies. Int J Mol Sci. 2019;20(10):2560. doi: 10.3390/ijms20102560. DOI: https://doi.org/10.3390/ijms20102560

Shen P, Han L, Ba X, Qin K, Tu S. Hyperprogressive Disease in Cancers Treated With Immune Checkpoint Inhibitors. Front Pharmacol. 2021;12:678409. doi: 10.3389/fphar.2021.678409. DOI: https://doi.org/10.3389/fphar.2021.678409

Medina PJ, Adams VR. PD-1 pathway inhibitors: Immuno-oncology agents for restoring antitumor immune responses. Pharmacotherapy. 2016;36(3):317-34. doi: 10.1002/phar.1714. DOI: https://doi.org/10.1002/phar.1714

Mandalà M, Rutkowski P. Rational combination of cancer immunotherapy in melanoma. Virchows Arch. 2019;474(4):433-447. doi: 10.1007/s00428-018-2506-y. DOI: https://doi.org/10.1007/s00428-018-2506-y

Horinouchi H, Nishio M, Hida T, Nakagawa K, Sakai H, Nogami N, Atagi S, Takahashi T, Saka H, Takenoyama M, Katakami N, Tanaka H, Takeda K, Satouchi M, Isobe H, Maemondo M, Goto K, Hirashima T, Minato K, Sumiyoshi N, Tamura T. Three-year follow-up results from phase II studies of nivolumab in Japanese patients with previously treated advanced non-small cell lung cancer: Pooled analysis of ONO-4538-05 and ONO-4538-06 studies. Cancer Med. 2019;8(11):5183-5193. doi: 10.1002/cam4.2411. DOI: https://doi.org/10.1002/cam4.2411

Maritaz C, Broutin S, Chaput N, Marabelle A, Paci A. Immune checkpoint-targeted antibodies: a room for dose and schedule optimization? J Hematol Oncol. 2022;15(1):6. doi: 10.1186/s13045-021-01182-3. DOI: https://doi.org/10.1186/s13045-021-01182-3

Liu P, Chen R, Zhang X, Fu R, Tao L, Jia W. Combined PD-1/PD-L1 and tumor-infiltrating immune cells redefined a unique molecular subtype of high-grade serous ovarian carcinoma. BMC Genomics. 2022;23(1):51. doi: 10.1186/s12864-021-08265-y. DOI: https://doi.org/10.1186/s12864-021-08265-y

Aboul-Fettouh N, Morse D, Patel J, Migden MR. Immunotherapy and Systemic Treatment of Cutaneous Squamous Cell Carcinoma. Dermatol Pract Concept. 2021;11(Suppl 2):e2021169S. doi: 10.5826/dpc.11S2a169S. DOI: https://doi.org/10.5826/dpc.11S2a169S

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563-7. doi: 10.1038/nature14011. DOI: https://doi.org/10.1038/nature14011

Chiang AC, Sequist LVD, Gilbert J, Conkling P, Thompson D, Marcoux JP, Gettinger S, Kowanetz M, Molinero L, O'Hear C, Fassò M, Lam S, Gordon MS. Clinical activity and safety of atezolizumab in a Phase 1 study of patients with relapsed/refractory small-cell lung cancer. Clin Lung Cancer. 2020;21(5):455-463.e4. doi: 10.1016/j.cllc.2020.05.008. DOI: https://doi.org/10.1016/j.cllc.2020.05.008

Calabrò L, Morra A, Giannarelli D, Amato G, D'Incecco A, Covre A, Lewis A, Rebelatto MC, Danielli R, Altomonte M, Di Giacomo AM, Maio M. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6(6):451-460. doi: 10.1016/S2213-2600(18)30151-6. DOI: https://doi.org/10.1016/S2213-2600(18)30151-6

Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann Transl Med. 2021;9(12):1037. doi: 10.21037/atm-20-6833. DOI: https://doi.org/10.21037/atm-20-6833

Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, Rodig SJ, Ligon AH, Roemer MGM, Reddy N, Cohen JB, Assouline S, Poon M, Sharma M, Kato K, Samakoglu S, Sumbul A, Grigg A. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: A single-arm, phase ii study. J Clin Oncol. 2019;37(6):481-489. doi: 10.1200/JCO.18.00766. DOI: https://doi.org/10.1200/JCO.18.00766

Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345-1356. doi: 10.1056/NEJMoa1709684. DOI: https://doi.org/10.1056/NEJMoa1709684

Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T-Cell motility and migration: Implications for tumor immunotherapy. Front Immunol. 2018;9:2737. doi: 10.3389/fimmu.2018.02737. DOI: https://doi.org/10.3389/fimmu.2018.02737

Kim HK, Heo MH, Lee HS, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. Comparison of RECIST to immune-related response criteria in patients with non-small cell lung cancer treated with immune-checkpoint inhibitors. Cancer Chemother Pharmacol. 2017;80(3):591-598. doi: 10.1007/s00280-017-3396-4. DOI: https://doi.org/10.1007/s00280-017-3396-4

Cui W, Popat S. Immune Checkpoint Inhibition for Unresectable Malignant Pleural Mesothelioma. Drugs. 2021;81(9):971-984. doi: 10.1007/s40265-021-01506-0. DOI: https://doi.org/10.1007/s40265-021-01506-0

Citado por