Bases moleculares del cáncer

The molecular fundamentals of cancer

Contenido principal del artículo

Otto Gabriel Monzón
Edmundo Mora Padilla
Lilian Torres Tobar
Luz Dary Gutiérrez
Cladelis Rubi

Resumen

El cáncer es una enfermedad caracterizada por la proliferación anormal de células neoplásicas, dada en esencia por alteraciones genéticas y epigenéticas. El control de las diferentes funciones celulares está dado por los genes codificados en el ADN, por lo tanto algunas alteraciones en genes que codifican para las proteínas involucradas en el ciclo de proliferación celular pue­ den inducir una cascada de eventos que llevan a la producción del fenotipo cancerígeno. La transformación maligna requiere que ocurran alteraciones en genes específicos que controlan la proliferación celular, la apoptosis y el mantenimiento de la integridad del ADN en la misma célula. Las mutaciones tienen la posibilidad de aparecer de manera esporádica o de heredarse, pueden ser sustituciones de bases, adiciones, deleciones o cambios epigenéticos. El presente artículo revisa conceptos moleculares involucrados en la génesis del cáncer.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

1. Myers MH, Ries LA. Cancer patient survival rates: SEER program results for 10 years of follow-up. CA Cancer J Clin. 1989 Jan Feb;39(1):21-32.
2. Alberts B, Bray D, Lewis J, Rafft M, et al. Biología molecular de la célula. 4a ed. Barcelona: Omega; 2004. 1463 p.
3. Cooper GM. Toe cell, a molecular approach. Washington: ASM Press; 1999.
4. Lewin B. Genes. 5th ed. New York : Oxford University; 2000. Aguirre A. Guía práctica del ciclo celular y mitosis. 8' ed. Cali: Norma; 2000.
6. Xia H, Qi H, Li Y, Pei J, Barton J, Blackstad M, Xu T, Tao W. LATS l tu­ mor supresor regulates G2/M transition and apoptosis. Oncogene.. 2002 Feb 14; 21(8):1233-41.
7. Nasmyth K. Viewpoint: putting the cell cycle in arder. Science. 1996 Dec 6; 274(5293):1643-5.
8. Celada A. Factores de transcripción y control de la expresión génica. Invest. cienc. 1991; 179: 42-51.
9. Kohn EA, Ruth NO, Brown MK, Livingstone M, Eastman A. Abrogation of the S phase DNA damage check point results in S phase progression or prematuremi­ tosis depending on the concentration of 7-hydroxystaurosporine and the kinetics of Cdc25C activation. J Biol Chem. 2002 Jul 19;277(29):26553-64.
10. Darzynkiewicz Z, Smolewski P, Bedner E. Use of flow and laser scanning cyto­ metry to study mechanisms regulating cell cycle and controlling cell death. Clin Lab Med. 2001 Dec;21(4):857-73.
11. Fisher DE. Pathways of apoptosis and the modulation of cell death in cancer. Hematol Oncol Clin North Am. 2001 Oct;15(5):931-56, ix.
12 . Black JO. Protein kinase C-mediated regulation of the cell cycle. Front Biosci. 2000 Apr 1;5: D406-23.
13. Zink D, Mayr C, Janz C, Weismuller L. Association of p53 and MSH2 with recombinative repair complex during S phase. Oncogene. 2002; 21: 4788-800.
14. Fisher DE. Pathways of apoptosis and the modulation of cell death in cancer. Hematol Oncol Clin North Am. 2001 Oct;l5(5):931-56.
15. Orlowski CC, Furlanetto RW. The mammalian cell cycle in normal and abnorrnal growth. Endocrino! Metab Clin North Am. 1996 Sep;25(3):491-502.
16. Hanahan D, Weinberg RA. The Hallmarks of cancer. Cell. 2000 Jan 7;100(1):57-70.
17. Crighton D, Ryan KM. Splicing DNA damage responses to tumour cell death. Biochim Biophys Acta. 2004 Dec 10;1705(1):3-15.
18. Prober DA, Edgar BA. Growth regulation by oncogenes--new insights from mo­ del organisms. Curr Opin Genet Dev. 2001 Feb; 11(]):19-26.
19. Oncogenes and cancer. En: Lewin B. Gene VI. Oxford: University; 1997. pp. 1131-72.
20. Oncogenes and cancer. En: Gene IX. Oxford: University,2006:
21. Sherr CJ. Cancer cell cycles. Science. 1996 Dec 6; 274(5293):1672-7
22. Marx J. How cells cycle toward cancer. Science. 1994 Jan 21; 263(5145):319-21.
23. Vogelstein B, Kinszler KW. The multistep nature of cancer. Trends Genet. 1993 Apr; 9(4):138-41.
24. Bardelli A, Cahill DP, Lederer G, Speicher MR, Kinzler KW. Carcinogen­ specific induction of genetic instability. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5770-5.
25. Ríos Hernández M, Hernández Menéndez M. Los genes supresores de tumores y el cáncer. Rev Cubana Oncol. 2001;17(1):65-71
26. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus ty­ pes 16 and 18 E6 proteins with p53. Science. 1990 Apr 6; 248(4951):76-9.
27. Johnson DG, Cress WD, Jakoi L, Nevins JR. Oncogenic capacity of the E2Fl gene. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12823-7.
28. Singh P, Wong SH. Hong W. Overexpression of E2F-1 in rat embryo fibroblast leads to neoplastic transformation. EMBO J. 1994 Ju] 15 ; 13(14):3329-38.
29. Beijersbergen RL, Benards R. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim Biophys Acta. 1996 Jun 7;1287(2-3):103-20
30. Holey P. Mechanistic role for human papilomavirus in human cancer. En: Forther J, Rhoads JE. Accomplishments in cancer research 1994. Philadelphia: Lippinco­ tt, 1995; 174.
31. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and the­ rapy. Oncogene. 2007: 26(9): 1324-37.
32. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980; 68: 251-306.
Bemards R, Weinberg RA. A progression puzzle. Nature. 2002; 418 (6900):823.
34. Nikiforov MA, Hagen K, Ossovskaya VS, Connor TM, Lowe SW, Deichman GI, et al. p53 modulation of anchorage independent growth and experimental rnetastasis. Oncogene 1996; 13 (8):1709-19.
35. Wallace-Brodeur RR, Lowe SW. Clinical implication of p53 mutation. Cell Mol Life Sci. 1999; 55(1): 64-75.
36. Vassileiv L.T. MDM2 lnhibitors for Cancer Therapy . Trends Mol Med. 2007 Jan;l3(1):23-31.
37. Hirata H, Hinoda Y, Kikuno N, Kawamoto K, Suehiro Y, Tanaka Y, Dahiya R. MDM2 SNP309 is associated with for susceptibility and poor prognosis in renal cell carcinoma. Clin Cancer Res. 2007 Jul 15; 13(14):4123-9.
38. Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008 Dec; 7(12):979-87.
39. Ahmed S, Alpi A, Hengartner MO, Gartner A. C. elegans RAD-5/CLK- 2 defines a new DNA damage checkpoint protein. Curr Biol. 2001 Dec I J; 11(24):1934-44.
40. Buerrneyer AB, Deschenes SM, Baker SM, Liskay RM. Mammalian DNA mis­ match repair. Annu Rev Genet. 1999; 33:533-64.
41. Alpi A, Pasierbek P, Gartner A, Loidl J. Genetic and cytological characterization of the recombinationprotein RAD-51 in Caenorhabditis elegans. Chromosoma. 2003 Ju]; 112(1):6-16.
42. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. BACHI, a novel helicase-like protein, interacts directly with BRCAI and contri­ butes to its DNA repair function. Cell. 2001 Apr 6;105(1):149-60.
43. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA Double-Strand break repair pathway choice. Cell Res. 2008 Jan;l8 (1):134-47.
44. Cheung I, Schertzer M, Rose A, Lansdorp PM. High incidence of rapid telomere loss intelomerase-deficient Caenorhabditis elegans. Nucleic Acids Res. 2006 Jan 10; 34(1):96-103
45. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010 Jan; 31(1):9-18.
46. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular develo­ pment. Genes Dev. 1999 May 1;13(9):1055-66.
47. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008 Dec 25;359(26):2814-23.
48. McDermott U, Downing JR, Stratton MR. Genomics and the continuum of can­ cer care N Engl J Med. 2011 Jan 27; 364(4):340-50.
49. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of pa­ tients with a wide spectrum ofcancers. J Natl Cancer Inst. 1994 Mar 2;86(5):356- 61.
50. Brunner G, Nguyen H, Gabrilove J, Rifkin DB, Wilson EL. Basic fibroblast growth factor expressing in human bone marrow and peripheral blood cells. Blood. 1993 Feb 1;81(3):631-8.
51. Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009 Oct; 19(5):329-37.
52. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinasas regulators of the tumor microenviroment. Cell. 2010 Apr 2; 141(1):52-67.
53. Negrini S, Gorgoulis VG, Halazonetis TO. Genomic instability- an evolving hall­ mark of cancer. Nat Rev Mol Cell Biol. 2010 Mar; 11(3):220-8
54. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin: a novel angiogenesis inhibitor that mediales the suppression of me­ tastases by a Lewis lung carcinoma. Cell. 1994 Oct 21;79(2):315-28.
55. Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a003129.
56. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Ab­ bruzzese JL. Metastatic patterns in adenocarcinoma. Cancer. 2006 Apr 1;106(7):1624-33.

Citado por