Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Complicaciones cardiovasculares en relación con la programación fetal

Cardiovascular complications related to fetal programming




Sección
Artículo de revisión

Cómo citar
Cerón , N. A. ., Gutiérrez , O. O. ., Cerón , O. M. ., & Ortiz , R. A. . (2021). Complicaciones cardiovasculares en relación con la programación fetal . Revista Repertorio De Medicina Y Cirugía, 30(1), 7-12. https://doi.org/10.31260/RepertMedCir.01217273.943

Dimensions
PlumX
Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Nathalia Andrea Cerón
    Oscar Octalivar Gutiérrez
      Oscar Mauricio Cerón
        Robert Alirio Ortiz

          Nathalia Andrea Cerón ,

          Medicina y Cirugía. Universidad del Cauca. Popayán, Colombia.


          Oscar Octalivar Gutiérrez ,

          Ginecología y Obstetricia. Universidad del Cauca, Popayán, Colombia.


          Oscar Mauricio Cerón ,

          Medicina, Universidad de Ciencias Aplicadas y Ambientales UDCA. Bogotá, Colombia.


          Robert Alirio Ortiz ,

          Ginecología y Obstetricia, Epidemiología, Universidad del Cauca, Popayán, Colombia.


          Introducción: la programación fetal ofrece nuevas perspectivas sobre el origen de las enfermedades cardiovasculares, relacionando su aparición con factores perinatales. Objetivo: exponer evidencia que vincule las alteraciones gestacionales con las enfermedades cardiovasculares en la vida adulta del feto. Metodología: búsqueda en las bases de datos EBSCO, COCHRANE, MEDLINE, PROQUEST y SciELO de los artículos de revisión e investigaciones originales en inglés publicados en los últimos diez años. Se utilizaron términos MeSH para búsqueda controlada y se evaluaron los estudios con STROBE y PRISMA según correspondía. Resultados: los hallazgos sugieren que nacer con menos de 2600 k guarda relación con diabetes mellitus (OR de 1.607 IC 95% 1.324-1.951), hipertensión arterial (OR de 1.15 IC 95% 1.043-1.288) y menor función endotelial (1.94+0.37 vs 2.68+0.41, p: 0.0001) en la adultez. La prematuridad se asocia con mayores presiones arteriales sistólicas (4.2 mmHg IC 95%; 2.8 - 5.7 p 0.001) y diastólicas (2.6 mmHg IC 95%; 1.2-4.0; p 0.001). Las alteraciones nutricionales maternas y la diabetes gestacional aumentan el riesgo de síndrome metabólico (OR 1.2 IC 95% 0.9-1.7) y sobrepeso en la edad escolar (OR 1.81 IC 95% 1.18 - 2.86). Conclusión: los resultados adversos en la gestación están relacionados con el desarrollo de enfermedades cardiovasculares en la vida adulta del feto expuesto.


          Visitas del artículo 1196 | Visitas PDF 938


          Descargas

          Los datos de descarga todavía no están disponibles.
          1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016;133(4):e38-360.
          2. Ministerio de Salud y protección Social, Dirección de Epidemiología y Demografía. Análisis de Situación de Salud. Colombia, 2016. Colombia: Ministerio de Salud y protección Social; 2015. p. 149.
          3. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564-7. DOI: https://doi.org/10.1136/bmj.298.6673.564
          4. Barker DJ. Fetal origins of coronary heart disease. Br Heart J. 1993;69(3):195-6. DOI: https://doi.org/10.1136/hrt.69.3.195
          5. Marciniak A, Patro-Malysza J, Kimber-Trojnar Z, Marciniak B, Oleszczuk J, Leszczynska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol. 2017;56(2):133-8. DOI: https://doi.org/10.1016/j.tjog.2017.01.001
          6. Perrone S, Santacroce A, Picardi A, Buonocore G. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases. World J Clin Pediatr. 2016;5(2):172- 81. DOI: https://doi.org/10.5409/wjcp.v5.i2.172
          7. Salam RA, Das JK, Bhutta ZA. Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care. 2014;17(3):249-54. DOI: https://doi.org/10.1097/MCO.0000000000000051
          8. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. New Engl J of Med. 2008;359(1):61-73. DOI: https://doi.org/10.1056/NEJMra0708473
          9. Robertson SA, Chin PY, Femia JG, Brown HM. Embryotoxic cytokines-Potential roles in embryo loss and fetal programming. J Reprod Immunol. 2018;125:80-8. DOI: https://doi.org/10.1016/j.jri.2017.12.003
          10. Meister TA, Rexhaj E, Rimoldi SF, Scherrer U, Sartori C. Fetal programming and vascular dysfunction. Artery Res. 2018;21:69- 77. DOI: https://doi.org/10.1016/j.artres.2017.11.005
          11. Hsu P, Nanan R. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells. J Reprod Immunol. 2014;104-105:2-7. DOI: https://doi.org/10.1016/j.jri.2014.02.005
          12. Vandenbroucke JP, Von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Mejorar la comunicación de estudios observacionales en epidemiología (STROBE): explicación y elaboración. Gac Sanit. 2009;23(2):158e1-e28. DOI: https://doi.org/10.1016/j.gaceta.2008.12.001
          13. Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clin. 2010;135(11):507-11. DOI: https://doi.org/10.1016/j.medcli.2010.01.015
          14. Cooper R, Power C. Sex differences in the associations between birthweight and lipid levels in middle-age: findings from the 1958 British birth cohort. Atherosclerosis. 2008;200(1):141-9. Epub 2008/01/01. DOI: https://doi.org/10.1016/j.atherosclerosis.2007.11.011
          15. Illingworth RS. Birth weight and subsequent weight. Br Med J. 1950;1(4645):96. DOI: https://doi.org/10.1136/bmj.1.4645.96
          16. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. Jama. 2008;300(24):2886-97. Epub 2008/12/26. DOI: https://doi.org/10.1001/jama.2008.886
          17. Pilgaard K, Faerch K, Carstensen B, Poulsen P, Pisinger C, Pedersen O, et al. Low birthweight and premature birth are both associated with type 2 diabetes in a random sample of middle-aged Danes. Diabetologia. 2010;53(12):2526-30. doi: 10.1007/s00125-010-1917- 3 DOI: https://doi.org/10.1007/s00125-010-1917-3
          18. Wei JN, Li HY, Sung FC, Lin CC, Chiang CC, Li CY, et al. Birth weight correlates differently with cardiovascular risk factors in youth. Obesity (Silver Spring). 2007;15(6):1609-16. doi: 10.1038/ oby.2007.190. doi: 10.1016/j.molmet.2018.06.009. DOI: https://doi.org/10.1038/oby.2007.190
          19. Beeson JH, Blackmore HL, Carr SK, Dearden L, Duque-Guimarães DE, Kusinski LC, et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol Metab. 2018;16:35-44. doi: 10.1016/j. molmet.2018.06.009 DOI: https://doi.org/10.1016/j.molmet.2018.06.009
          20. de Rooij SR, Painter RC, Holleman F, Bossuyt PM, Roseboom TJ. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr. 2007;86(4):1219-24. doi: 10.1093/ ajcn/86.4.1219 DOI: https://doi.org/10.1093/ajcn/86.4.1219
          21. Bettiol H, Sabbag Filho D, Haeffner LS, Barbieri MA, Silva AA, Portela A, et al. Do intrauterine growth restriction and overweight at primary school age increase the risk of elevated body mass index in young adults?. J Med Biol Res. 2007;40(9):1237-43. doi: 10.1590/s0100-879x2007000900011 DOI: https://doi.org/10.1590/S0100-879X2007000900011
          22. Baptiste-Roberts K, Nicholson WK, Wang NY, Brancati FL. Gestational diabetes and subsequent growth patterns of offspring: the National Collaborative Perinatal Project. Matern Child Health J. 2012;16(1):125-32. doi: 10.1007/s10995-011-0756-2 DOI: https://doi.org/10.1007/s10995-011-0756-2
          23. Parkinson JR, Hyde MJ, Gale C, Santhakumaran S, Modi N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics. 2013;131(4):e1240-63. doi: 10.1542/ peds.2012-2177 DOI: https://doi.org/10.1542/peds.2012-2177
          24. Dalziel SR, Parag V, Rodgers A, Harding JE. Cardiovascular risk factors at age 30 following pre-term birth. Int J Epidemiol. 2007;36(4):907-15. doi: 10.1093/ije/dym067. DOI: https://doi.org/10.1093/ije/dym067
          25. Bassareo PP, Fanos V, Puddu M, Demuru P, Cadeddu F, Balzarini M, et al. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: a condition predictive of increased cardiovascular risk? J Matern Neonatal Med. 2010;23 Suppl 3:121-4. Epub 2010/10/12. DOI: https://doi.org/10.3109/14767058.2010.506811
          26. Leeson CP, Kattenhorn M, Morley R, Lucas A, Deanfield JE. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001;103(9):1264-8. doi: 10.3109/14767058.2010.506811. DOI: https://doi.org/10.1161/01.CIR.103.9.1264
          27. Hocher B. More than genes: the advanced fetal programming hypothesis. J Reprod Immunol. 2014;104-105:8-11. doi: 10.1016/j. jri.2014.03.001. DOI: https://doi.org/10.1016/j.jri.2014.03.001
          28. Morgan AR, Thompson JM, Murphy R, Black PN, Lam WJ, Ferguson LR, et al. Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet. 2010;11:125. doi: 10.1186/1471-2350-11-125. DOI: https://doi.org/10.1186/1471-2350-11-125
          29. Bischoff AR, Portella AK, Paquet C, Dalle Molle R, Faber A, Arora N, et al. Low birth weight is associated with increased fat intake in school-aged boys. Br J Nutr. 2018;119(11):1295-302. DOI: https://doi.org/10.1017/S0007114518000892
          30. Taniguchi K, Kawai T, Hata K. Placental Development and Nutritional Environment. Adv Exp Med Biol. 2018;1012:63-73. doi: 10.1007/978-981-10-5526-3_7. DOI: https://doi.org/10.1007/978-981-10-5526-3_7
          31. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169-81. doi: 10.1016/S0140-6736(11)60614-4. DOI: https://doi.org/10.1016/S0140-6736(11)60614-4
          32. Plagemann A. Maternal diabetes and perinatal programming. Early Hum Dev. 2011;87(11):743-7. doi:10.1016/j. earlhumdev.2011.08.018 DOI: https://doi.org/10.1016/j.earlhumdev.2011.08.018
          33. Briana DD, Malamitsi-Puchner A. Intrauterine growth restriction and adult disease: the role of adipocytokines. European journal of endocrinology. 2009;160(3):337-47. doi: 10.1530/EJE-08-0621. DOI: https://doi.org/10.1530/EJE-08-0621
          34. Ornoy A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol. 2011;32(2):205-12. doi: 10.1016/j.reprotox.2011.05.002. DOI: https://doi.org/10.1016/j.reprotox.2011.05.002
          35. Langley-Evans SC, Welham SJ, Jackson AA. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci. 1999;64(11):965-74. doi: 10.1016/ s0024-3205(99)00022-3. DOI: https://doi.org/10.1016/S0024-3205(99)00022-3
          36. Ojeda NB, Grigore D, Alexander BT. Intrauterine growth restriction: fetal programming of hypertension and kidney disease. Adv Chronic Kidney Dis. 2008;15(2):101-6. doi: 10.1053/j. ackd.2008.01.001. DOI: https://doi.org/10.1053/j.ackd.2008.01.001
          37. Van De Maele K, Devlieger R, Gies I. In utero programming and early detection of cardiovascular disease in the offspring of mothers with obesity. Atherosclerosis. 2018;275:182-95. doi: 10.1016/j.atherosclerosis.2018.06.016. DOI: https://doi.org/10.1016/j.atherosclerosis.2018.06.016
          38. Simeoni U, Armengaud JB, Siddeek B, Tolsa JF. Perinatal Origins of Adult Disease. Neonatology. 2018;113(4):393-9. doi: 10.1159/000487618. DOI: https://doi.org/10.1159/000487618
          39. Balci MM, Acikel S, Akdemir R. Low birth weight and increased cardiovascular risk: fetal programming. Int J Cardiol. 2010;144(1):110-1. doi: 10.1016/j.ijcard.2008.12.111. DOI: https://doi.org/10.1016/j.ijcard.2008.12.111
          40. Ferreira VR, Jardim TV, Póvoa TR, Mendonça KL, Nascente FN, Carneiro CS, et al. Birth weight and its association with blood pressure and nutritional status in adolescents. J Pediatr. 2018;94(2):184-91. doi: 10.1016/j.jped.2017.04.007. DOI: https://doi.org/10.1016/j.jped.2017.04.007
          Sistema OJS 3.4.0.5 - Metabiblioteca |