Skip to main navigation menu Skip to main content Skip to site footer

Physical work capacity and body composition

Capacidad física de trabajo y composición corporal




Section
Research Article

How to Cite
Piragauta Ardila , L. A. ., Echavarría Calderón, M. ., & Cardenas Cerón, R. (2023). Physical work capacity and body composition. Journal of Medicine and Surgery Repertoire, 32(1), 61-70. https://doi.org/10.31260/RepertMedCir.01217372.1258

Dimensions
PlumX
license

   

Luis Alberto Piragauta Ardila

    Marcela Echavarría Calderón

      Roberto Cardenas Cerón


        Luis Alberto Piragauta Ardila ,

        Instructor Asistente, Fundación Universitaria de Ciencias de la Salud


        Roberto Cardenas Cerón,

        Residente III Medicina de la Actividad Física y del Deporte. Fundación Universitaria de Ciencias de la Salud.


        Introduction: physical work capacity (PWC) is described as the set of tasks used to perform daily living activities compared to healthy individuals; PWC is assessed by hand grip force and abdominal muscle endurance, balance, flexibility, gait speed and aerobic capacity.  Therefore, PWC and skeletal muscle mass index (SMI) are related to each other and may be improved by exercise training. Objective: to determine whether a supervised and controlled training program once a week for six months is effective in changing PWC and SMI in subjects over 18 years of age. Methods: a retrospective analytical, cohort observational study of 565 patients who attended a supervised and controlled training program once a week for six months.  Results: at the end of the intervention, mean PWC improved by -8.59 points (P=0.000) and SMI increased by -0.06 points (P=0.002). Conclusions: this study suggests that a one-hour, guided and supervised training program intervention provides beneficial effects in PWC variables and enhances SMI, which is explained by changes in the microstructure of skeletal muscle (improvement in the capacity to perform work per unit of muscle mass).


        Article visits 946 | PDF visits 2203


        Downloads

        Download data is not yet available.
        1. Moritani T, Ata AN, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50. doi: 10.1080/00140138108924856
        2. Kenny GP, Yardley JE, Martineau L, Jay O. Physical work capacity in older adults: Implications for the aging worker. Am J Ind Med. 2008;51(8):610–25. doi: 10.1002/ajim.20600
        3. Van Den Berg TIJ, Elders LAM, De Zwart BCH, Burdorf A. The effects of work-related and individual factors the work ability index: A systematic review. Occup Environ Med. 2009;66(4):211–20. doi: 10.1136/oem.2008.039883
        4. Herrera-Castanedo S, Vázquez-Barquero J, Gaite Pindado L. La Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud (CIF). Rehabilitación. 2008;42(6):269–75. doi: 10.1016/S0048-7120(08)75662-7
        5. Soer R, Van Der Schans CP, Groothoff JW, Geertzen JHB, Reneman MF. Towards consensus in operational definitions in functional capacity evaluation: A Delphi survey. J Occup Rehabil. 2008;18(4):389–400. doi: 10.1007/s10926-008-9155-y
        6. Trippolini MA, Dijkstra PU, Geertzen JHB, Reneman MF. Construct Validity of Functional Capacity Evaluation in Patients with Whiplash-Associated Disorders. J Occup Rehabil. 2015;25(3):481–92. doi: 10.1007/s10926-014-9555-0
        7. Gouttebarge V, Wind H, Kuijer PPFM, Frings-Dresen MHW. Reliability and validity of Functional Capacity Evaluation methods: A systematic review with reference to Blankenship system, Ergos work simulator, Ergo-Kit and Isernhagen work system. Int Arch Occup Environ Health. 2004;77(8):527–37. doi: 10.1007/s00420-004-0549-7
        8. World Health Organization. International Classification of Functioning, Disability and Health - WHO-ICF [Internet]. WHO-ICF. World Health Organization; 2001 [cited 2021 Apr 29]. Available from: https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health
        9. Riebe D;, Ehrman JK;, Liguori G, Magal M. ACSM’s guidelines for exercise testing and prescription [Internet]. 10th ed. Kluwer W, editor. 2018 [cited 2021 Apr 29]. Available from: https://www.worldcat.org/title/acsms-guidelines-for-exercise-testing-and-prescription/oclc/958942491
        10. Cruz Jentoft A, Baeyens JP, Bauer JM. Sarcopenia: consenso europeo sobre su definición y diagnóstico. Informe del Grupo europeo de trabajo sobre la sarcopenia en personas de edad avanzada. Br Geriatr Soc. 2018;39(4):412–23. doi: 10.1093/ageing/afq034
        11. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi: 10.1093/ageing/afy169
        12. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63. doi: 10.1093/oxfordjournals.aje.a009520
        13. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, et al. Sarcopenia: Alternative Definitions and Associations with Lower Extremity Function. J Am Geriatr Soc. 2003;51(11):1602–9. doi: 10.1046/j.1532-5415.2003.51534.x
        14. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal Muscle Cutpoints Associated with Elevated Physical Disability Risk in Older Men and Women. Am J Epidemiol. 2004;159(4):413-21. doi: 10.1093/aje/kwh058
        15. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96. doi: 10.1046/j.1532-5415.2002.50216.x
        16. Afshari D, Siahi Ahangar A, Mohi Pour S, Ahmadi angali K, Amirmoezi S. The effects of anthropometric and demographic factors on physical work capacity. J Occup Hyg Eng. 2018;4(4):12–9. doi: 10.21859/johe.4.4.12
        17. OMRON. Manual de Instrucciones. Balanza de control corporal Hbf-514c [Internet]. 2014 [cited 2021 Apr 29]; Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.anthropomed.cl/wp-content/uploads/2017/07/Manual-Omron-514cla.pdf
        18. Borg G. Psychophysical bases of perceived exertion. Med Sci Sport Exerc. 1982;14(5):377–81.
        19. Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sport. 2006;16(1):57–69. doi: 10.1111/j.1600-0838.2005.00448.x
        20. Pardo C, Muñoz T, Chamorro Jambrina C. Monitorización del dolor. Recomendaciones del grupo de trabajo de analgesia y sedación de la SEMICYUC. J Med Sci Sport. 2008;30(8):379–385. doi: 10.1016/s0210-5691(06)74552-1
        21. Valencia Chávez A, Jiménez Orozco JH, Díaz Marchán L, Mazadiego González ME. Correlación entre la escala de Borg modificada y la saturación de oxígeno durante la prueba de esfuerzo máxima en pacientes postinfartados. Rev Mex Med Fís Rehab. 2012;24(1):5–9.
        22. Sinaki M, Offord KP. Physical activity in postmenopausal women: effect on back muscle strength and bone mineral density of the spine. Arch Phys Med Rehabil. 1988;69(4):277–80.
        23. Yaginuma Y, Abe T, Thiebaud RS, Kitamura T, Kawanishi M, Fukunaga T. Can Handgrip Strength Improve Following Body Mass-Based Lower Body Exercise? Biores Open Access. 2017;6(1):19–27. doi: 10.1089/biores.2017.0008
        24. General ASDE. Manual de Usuario: dinamómetro electrónico CAMRY Mod: EH101 [Internet]. 2020 [citado 2021 Apr 29]. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://generalasde.com/dinamometro/manual-dinamometro-camry-eh101-general-asde.pdf
        25. Pollock ML, Wilmore J. Resistance training for Health. The President’s Council on Physical Fitness and Sports Research Digest. 1996 [cited 2021 Apr 29];1–9. Available from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1010870
        26. Rybertt C, Cuevas S, Winkler X, Lavados P, Martínez SF. Parámetros funcionales y su relación con la velocidad de marcha en adultos mayores chilenos residentes en la comunidad. Biomedica. 2015;35(2):212–8. https://doi.org/10.7705/biomedica.v35i2.2571
        27. Puthoff ML. Outcome measures in cardiopulmonary physical therapy: short physical performance battery. Cardiopulm Phys Ther J. 2008;19(1):17–22.
        28. Hernandez N, Álvarez G, Bravo F, Vieira JC, Reina EA, Herrera J manuel. Validación de la prueba de Romberg Modificada para la determinación del tiempo de propiocepción inconciente en adultos sanos. Rev Colomb Ortop Traumatol. 2018;32(2):93-99. doi: 10.1016/j.rccot.2017.11.001
        29. Franca da Silva AK, da Costa de Rezende Barbosa MP, Barbosa Bernardo AF. Cardiac risk stratification in cardiac rehabilitation programs: a review of protocols. Rev Bras Cir Cardiovasc [Internet]. 2014;29(2):255–265. doi: 10.5935/1678-9741.20140067
        30. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation. 2013;128(16):240–327. doi: 10.1161/CIR.0b013e31829e8776
        31. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn. 1957;35(3):307–15.
        32. Inc QS. Calculate by QxMD | QxMD [Internet]. [cited 2021 Apr 29]. Available from: https://qxmd.com/calculate-by-qxmd
        33. Fujita T, Sato A, Togashi Y, Kasahara R, Ohashi T, Yamamoto Y. Contribution of abdominal muscle strength to various activities of daily living of stroke patients with mild paralysis. J Phys Ther Sci. 2015;27(3):815–818. doi: 10.1589/jpts.27.815
        34. Son S, Jeon B. Effects of an abdominal muscle exercise program in people with intellectual disabilities residing in a residential care facility. J Phys Ther Sci. 2017;29(7):1196–200. doi: 10.1589/jpts.29.1196
        35. Gurses HN, Zeren M, Denizoglu Kulli H, Durgut E. The relationship of sit-to-stand tests with 6-minute walk test in healthy young adults. Med (United States). 2018;97(1):e9489. doi: 10.1097/MD.0000000000009489
        36. Khan H, Kunutsor S, Rauramaa R, Savonen K, Kalogeropoulos AP, Georgiopoulou V V., et al. Cardiorespiratory fitness and risk of heart failure: A population-based follow-up study. Eur J Heart Fail. 2014;16(2):180–8. doi: 10.1111/ejhf.37
        37. Berry JD, Pandey A, Gao A, Leonard D, Farzaneh-Far R, Ayers C, DeFina L, Willis B. Physical fitness and risk for heart failure and coronary artery disease. Circ Hear Fail. 2013;6(4):627–34. doi: 10.1161/CIRCHEARTFAILURE.112.000054
        38. Crawford D, Drake N, Carper M, DeBlauw J, Heinrich K. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports (Basel). 2018;6(2):26. doi: 10.3390/sports6020026
        39. World Health Organization. Global Strategy on Diet, Physical Activity and Healt [Internet]. WHO-ICF. 2010 [cited 2021 Apr 28]. Available from: https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health
        40. Cordero A, Dolores Masiá M, Galve E. Ejercicio físico y salud. Rev Esp Cardiol. 2014;67(9):748–53. http://dx.doi.org/10.1016/j.recesp.2014.04.007
        41. Shaw I, Shaw BS, Brown GA, Cilliers JF. Concurrent resistance and aerobic training as protection against heart disease. Cardiovasc J Afr. 2010;21(4):166–9.
        Sistema OJS 3.4.0.5 - Metabiblioteca |