Artificial intelligence in the histopathological diagnosis of microorganisms
Inteligencia artificial en el diagnóstico histopatológico de microorganismos
Show authors biography
Introduction: most of the digital pathology applications are related to oncology, although some recent models have been proposed to evaluate their usefulness in the histopathological diagnosis of microorganisms. Material and Methods: this review included 10 articles published in English, centered around the histopathological diagnosis of microorganisms and the different artificial intelligence (AI) models. Discussion: the designed AI models have been tested for diagnosing Helicobacter pylori, Mycobacterium tuberculosis, Aspergillus, Mucorales and microorganisms causing onychomycosis. Conclusions: the use of artificial intelligence in the histopathological diagnosis of microorganisms is recommended as an emerging field which assists the pathologist coordinating the different models, thus optimizing his function, and improving workflows and effectiveness levels.
Article visits 350 | PDF visits 334
Downloads
- College of American Pathologists. What is pathology? [Internet]. 2019 [citado el 25 de abril de 2023]. Disponible en: https://www.cap.org/member-resources/articles/what-is-pathology.
- Smith KP, Kirby JE. Image analysis and artificial intelligence in infectious disease diagnostics. Clin Microbiol Infect. 2020;26(10):1318–23. http://dx.doi.org/10.1016/j.cmi.2020.03.012
- Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253–61. http://dx.doi.org/10.1016/s1470-2045(19)30154-8
- Luchini C, Pantanowitz L, Adsay V, Asa SL, Antonini P, Girolami I, et al. Ki-67 assessment of pancreatic neuroendocrine neoplasms: Systematic review and meta-analysis of manual vs. digital pathology scoring. Mod Pathol. 2022;35(6):712–20. http://dx.doi.org/10.1038/s41379-022-01055-1.
- Lin E, Fuda F, Luu HS, Cox AM, Fang F, Feng J, et al. Digital pathology and artificial intelligence as the next chapter in diagnostic hematopathology. Semin Diagn Pathol. 2023;40(2):88–94. http://dx.doi.org/10.1053/j.semdp.2023.02.001
- Kuok C-P, Horng M-H, Liao Y-M, Chow N-H, Sun Y-N. An effective and accurate identification system of Mycobacterium tuberculosis using convolution neural networks. Microsc Res Tech. 2019;82(6):709–19. http://dx.doi.org/10.1002/jemt.23217
- Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533-536.
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. En: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editores. Advances in Neural Information Processing Systems [Internet]. Curran Associates, Inc.; 2012. p.1-9.
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. http://dx.doi.org/10.1038/nature14539
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402-10. http://dx.doi.org/10.1001/jama.2016.17216
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118. http://dx.doi.org/10.1038/nature21056
- Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 2 de diciembre de 2015 [citado 11 de diciembre de 2018]; Disponible en: https://arxiv.org/abs/1512.00567
- van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med. 2021;27(5):775–84. http://dx.doi.org/10.1038/s41591-021-01343-4.
- Prewitt JM, Mendelsohn ML. The analysis of cell images. Ann N Y Acad Sci. 1966;128(3):1035–53. http://dx.doi.org/10.1111/j.1749-6632.1965.tb11715.x.
- Kather JN, Weis C-A, Bianconi F, Melchers SM, Schad LR, Gaiser T, et al. Multi-class texture analysis in colorectal cancer histology. Sci Rep. 2016;6:27988. http://dx.doi.org/10.1038/srep27988.
- Ciresan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J. Flexible, High Performance Convolutional Neural Networks for Image Classification [Internet]. Idsia.ch. [citado el 25 de abril de 2023]. Disponible en: https://people.idsia.ch/~juergen/ijcai2011.pdf
- Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411–8.http://dx.doi.org/10.1007/978-3-642-40763-5_51.
- Litjens G, Bandi P, Ehteshami Bejnordi B, Geessink O, Balkenhol M, Bult P, et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. Gigascience. 2018;7(6):giy065. http://dx.doi.org/10.1093/gigascience/giy065.
- Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, et al. Detecting cancer metastases on gigapixel pathology images. arXiv [cs.CV]. 2017 [citado el 25 de abril de 2023]. Disponible en: http://arxiv.org/abs/1703.02442.
- Pinckaers H, Litjens G. Neural Ordinary Differential Equations for semantic segmentation of individual colon glands [Internet]. arXiv [eess. IV]. 2019. Disponible en: http://arxiv.org/abs/1910.10470
- Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T, et al. Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge. Med Image Anal. 2019;54:111–21. http://dx.doi.org/10.1016/j.media.2019.02.012
- Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med. 2019;2(1):48. http://dx.doi.org/10.1038/s41746-019-0112-2
- Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301–9. http://dx.doi.org/10.1038/s41591-019-0508-1
- Song Z, Zou S, Zhou W, Huang Y, Shao L, Yuan J, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat Commun. 2020;11(1):4294. http://dx.doi.org/10.1038/s41467-020-18147-8
- Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging. 2016;35(5):1313–21. http://dx.doi.org/10.1109/TMI.2016.2528120
- Koohbanani NA, Jahanifar M, Tajadin NZ, Rajpoot N. NuClick: A deep learning framework for interactive segmentation of microscopy images [Internet]. arXiv [cs.CV]. 2020 [citado el 25 de abril de 2023]. Disponible en: http://arxiv.org/abs/2005.14511
- Ocampo P, Moreira A, Coudray N, Sakellaropoulos T, Narula N, Snuderl M, et al. P1.09-32 classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. J Thorac Oncol. 2018;13(10):S562. http://dx.doi.org/10.1016/j.jtho.2018.08.808.
- Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH. Patch-based convolutional neural network for whole slide tissue image classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016; 2016:2424–33. http://dx.doi.org/10.1109/CVPR.2016.266
- Qaiser T, Pugh M, Margielewska S, Hollows R, Murray P, Rajpoot N. Digital tumor-collagen proximity signature predicts survival in diffuse large B-cell lymphoma. In: Digital Pathology. Cham: Springer International Publishing; 2019. p. 163–71.
- Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A. 2018;115(13):E2970–9. http://dx.doi.org/10.1073/pnas.1717139115
- Kleppe A, Skrede O-J, De Raedt S, Liestøl K, Kerr DJ, Danielsen HE. Designing deep learning studies in cancer diagnostics. Nat Rev Cancer. 2021;21(3):199–211. http://dx.doi.org/10.1038/s41568-020-00327-9
- Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. http://dx.doi.org/10.1136/bmj.m689
- Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393(10181):1577–9. http://dx.doi.org/10.1016/s0140-6736(19)30037-6
- Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. http://dx.doi.org/10.1186/s12916-019-1426-2
- Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): A guide for authors and reviewers. Radiol Artif Intell. 2020;2(2): e200029. http://dx.doi.org/10.1148/ryai.2020200029
- Franklin MM, Schultz FA, Tafoya MA, Kerwin AA, Broehm CJ, Fischer EG, et al. A deep learning convolutional neural network can differentiate between Helicobacter pylori gastritis and autoimmune gastritis with results comparable to gastrointestinal pathologists. Arch Pathol Lab Med. 2022;146(1):117–22. http://dx.doi.org/10.5858/arpa.2020-0520-OA.
- Sulyok M, Luibrand J, Strohäker J, Karacsonyi P, Frauenfeld L, Makky A, et al. Implementing deep learning models for the classification of Echinococcus multilocularis infection in human liver tissue. Parasit Vectors. 2023;16(1):29. http://dx.doi.org/10.1186/s13071-022-05640-w.
- Hu R-S, Hesham AE-L, Zou Q. Machine learning and its applications for protozoal pathogens and protozoal infectious diseases. Front Cell Infect Microbiol. 2022;12:882995. http://dx.doi.org/10.3389/fcimb.2022.882995.
- Delgado-Ortet M, Molina A, Alférez S, Rodellar J, Merino A. A deep learning approach for segmentation of red blood cell images and malaria detection. Entropy (Basel). 2020;22(6):657. http://dx.doi.org/10.3390/e22060657.
- Huang CR, Chung PC, Sheu BS, Kuo HJ, Popper M. Helicobacter Pylori-Related Gastric Histology Classification Using Support-Vector-Machine-Based Feature Selection. IEEE Transactions on Information Technology in Biomedicine. 2008;12(4):523-31. http://dx.doi.org/10.1109/TITB.2007.913128
- Mohan BP, Khan SR, Kassab LL, Ponnada S, Mohy-Ud-Din N, Chandan S, et al. Convolutional neural networks in the computer-aided diagnosis of Helicobacter pylori infection and non-causal comparison to physician endoscopists: a systematic review with meta-analysis. Ann Gastroenterol. 2021;34(1):20-5. http://dx.doi.org/10.20524/aog.2020.0542
- Shi W, Georgiou P, Akram A, Proute MC, Serhiyenia T, Kerolos ME, et al. Diagnostic Pitfalls of Digital Microscopy Versus Light Microscopy in Gastrointestinal Pathology: A Systematic Review. Cureus. 2021;13(8):e17116. http://dx.doi.org/10.7759/cureus.17116
- Ford AC, Yuan Y, Forman D, Hunt R, Moayyedi P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database Syst Rev. 2020;7:CD005583. http://dx.doi.org/10.1002/14651858.CD005583.pub3
- Klein S, Gildenblat J, Ihle MA, Merkelbach-Bruse S, Noh K-W, Peifer M, et al. Deep learning for sensitive detection of Helicobacter Pylori in gastric biopsies. BMC Gastroenterol. 2020;20(1):417. http://dx.doi.org/10.1186/s12876-020-01494-7
- Gonçalves WGE, Santos MHPD, Brito LM, Palheta HGA, Lobato FMF, Demachki S, et al. DeepHP: A new gastric mucosa histopathology dataset for Helicobacter pylori infection diagnosis. Int J Mol Sci. 2022;23(23):14581. http://dx.doi.org/10.3390/ijms232314581
- Gonçalves WGE, Dos Santos MH de P, Lobato FMF, Ribeiro-Dos-Santos Â, de Araújo GS. Deep learning in gastric tissue diseases: a systematic review. BMJ Open Gastroenterol. 2020;7(1): e000371. http://dx.doi.org/10.1136/bmjgast-2019-000371
- Franklin MM, Schultz FA, Tafoya MA, Kerwin AA, Broehm CJ, Fischer EG, et al. A deep learning convolutional neural network can differentiate between Helicobacter pylori gastritis and autoimmune gastritis with results comparable to gastrointestinal pathologists. Arch Pathol Lab Med. 2022;146(1):117–22. http://dx.doi.org/10.5858/arpa.2020-0520-OA
- Xiong Y, Ba X, Hou A, Zhang K, Chen L, Li T. Automatic detection of mycobacterium tuberculosis using artificial intelligence. J Thorac Dis. 2018;10(3):1936-1940. http://dx.doi.org/10.21037/jtd.2018.01.91
- Yang M, Nurzynska K, Walts AE, Gertych A. A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues. Comput Med Imaging Graph. 2020;84(101752):101752. http://dx.doi.org/10.1016/j.compmedimag.2020.101752
- Pantanowitz L, Wu U, Seigh L, LoPresti E, Yeh F-C, Salgia P, et al. Artificial intelligence-based screening for mycobacteria in whole-slide images of tissue samples. Am J Clin Pathol. 2021;156(1):117–28. http://dx.doi.org/10.1093/ajcp/aqaa215
- Sua LF, Bolaños JE, Maya J, Sánchez A, Medina G, Zúñiga-Restrepo V, et al. Detection of mycobacteria in paraffinembedded Ziehl-Neelsen-Stained tissues using digital pathology. Tuberculosis (Edinb). 2021;126(102025):102025. https://doi.org/10.1016/j.tube.2020.102025
- Tochigi N, Sadamoto S, Oura S, Kurose Y, Miyazaki Y, Shibuya K. Artificial intelligence in the diagnosis of invasive mold infection: Development of an automated histologic identification system to distinguish between Aspergillus and Mucorales. Med Mycol J. 2022;63(4):91–7. http://dx.doi.org/10.3314/mmj.22-00013
- Jansen P, Creosteanu A, Matyas V, Dilling A, Pina A, Saggini A, et al. Deep learning assisted diagnosis of onychomycosis on whole-slide images. J Fungi (Basel). 2022;8(9):912. http://dx.doi.org/10.3390/jof8090912