Skip to main navigation menu Skip to main content Skip to site footer

Mitochondrial behavior in cardiovascular diseases

Comportamiento mitocondrial en enfermedades cardíacas



Open | Download


Section
Reflection Articles

How to Cite
Noreña Buitrón, L. D., & Estela Zape, J. L. (2025). Mitochondrial behavior in cardiovascular diseases. Journal of Medicine and Surgery Repertoire. https://doi.org/10.31260/RepertMedCir.01217372.1591

Dimensions
PlumX
Citations
license

   


Lizeth Dayana Noreña Buitrón,

Faculty of Health Sciences. María Cano University Foundation, Cali-Colombia.


Jose Luis Estela Zape,

Faculty of Health, Santiago de Cali University, Cali-Colombia. Faculty of Health Sciences, María Cano University Foundation, Cali-Colombia.



##plugins.themes.bootstrap3.displayStats.noStats##

Introduction: as mitochondria play a central role in ATP production, they are related to cardiovascular diseases, the leading cause of death worldwide. Objective: to describe mitochondrial behavior in cardiovascular diseases. Discussion: mitochondrial dysfunction is accountable in cardiovascular conditions. ATP production is impaired in ischemia/reperfusion injury increasing oxidative stress; oxidative phosphorylation efficiency is reduced in heart failure exacerbating energetic deficiency; in valvular heart disease, dysregulation of mitochondrial homeostasis affects valvular function; and ionic imbalances and intracellular signaling alterations are associated with mitochondrial dysfunction in arrhythmias. Conclusion: cardiovascular diseases share similarities in bioenergetic and molecular alterations, underscoring the importance of understanding the role of mitochondria in this context.


Article visits 1 | PDF visits 0


Downloads

Download data is not yet available.
  1. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51(12):1-13. https://doi.org/10.1038/s12276-019-0355-7
  2. Li Y, Ma Y, Dang QY, Fan XR, Han CT, Xu SZ, et al. Assessment of mitochondrial dysfunction and implications in cardiovascular disorders. Life Sci. 2022;306:120834. https://doi.org/10.1016/j.lfs.2022.120834
  3. Organización Panamericana de la Salud, Organización Mundial de la Salud. Las enfermedades del corazón siguen siendo la principal causa de muerte en las Américas [Internet]. Organización Panamericana de la Salud; 2021. Disponible en: https://www.paho.org/es/noticias/29-9-2021-enfermedades-corazon-siguen-siendo-principal-causa-muerte-americas
  4. Noreña-Buitrón LD, Estela-Zape JL. Systemic Compensatory Mechanisms in Patients with Persistent Truncus Arteriosus. Rev Investig Innov Cienc Salud. 2024;6(2):248-261. https://doi.org/10.46634/riics.256
  5. Hernandez-Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ; EU-CARDIOPROTECTION COST Action (CA16225). Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med. 2020;24(12):6571-6585. https://doi.org/10.1111/jcmm.15384
  6. Wu S, Zou MH. AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci. 2020;21(14):4987. https://doi.org/10.3390/ijms21144987
  7. Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res. 2023;119(10):1905-1914. https://doi.org/10.1093/cvr/cvad100
  8. López-Hidalgo M, Eblen-Zajjur A. Isquemia miocárdica con coronarias de aspecto angiográfico normal. Enfoque diagnóstico. Investigación clínica. 2020;61(4):376-392. https://doi.org/10.22209/IC.v61n4a06
  9. Mui D, Zhang Y. Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury. J Recept Signal Transduct Res. 2021;41(1):1-5. https://doi.org/10.1080/10799893.2020.1784938
  10. Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020;57:102884. https://doi.org/10.1016/j.ebiom.2020.102884
  11. Wu L, Wang L, Du Y, Zhang Y, Ren J. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends Pharmacol Sci. 2023;44(1):34-49. https://doi.org/10.1016/j.tips.2022.10.003
  12. Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Reversing mitochondrial defects in aged hearts: role of mitochondrial calpain activation. Am J Physiol Cell Physiol. 2022;322(2):C296-C310. https://doi.org/10.1152/ajpcell.00279.2021
  13. Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P, et al. Myocardial Ischemia-Reperfusion Injury: Therapeutics from a Mitochondria-Centric Perspective. Cardiology. 2021;146(6):781-792. https://doi.org/10.1159/000518879
  14. Kim DS, Oyunbaatar NE, Shanmugasundaram A, Jeong YJ, Park J, Lee DW. Stress induced self-rollable smart-stent-based U-health platform for in-stent restenosis monitoring. Analyst. 2022;147(21):4793-4803.
  15. Davidson SM, Adameová A, Barile L, Cabrera-Fuentes HA, Lazou A, Pagliaro P, et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med. 2020;24(7):3795-3806. https://doi.org/10.1111/jcmm.15127
  16. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology. 2022;79(17)e263-e421. https://doi.org/10.1161/CIR.0000000000001063
  17. Ho MY, Wang CY. Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac Hypertrophy. Cells. 2021;10(8):2103. https://doi.org/10.3390/cells10082103
  18. Zhihao L, Jingyu N, Lan L, Michael S, Rui G, Xiyun B, et al. SERCA2a: a key protein in the Ca2+ cycle of the heart failure. Heart Fail Rev. 2020;25(3):523-535. https://doi.org/10.1007/s10741-019-09873-3
  19. Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, et al. Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Front Cardiovasc Med. 2022;8:822969. https://doi.org/10.3389/fcvm.2021.822969
  20. Gao HL, Yu XJ, Hu HB, Yang QW, Liu KL, Chen YM, et al. Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus. Cardiovasc Toxicol. 2021;21(9):721-736. https://doi.org/10.1007/s12012-021-09662-1
  21. Ni Y, Deng J, Bai H, Liu C, Liu X, Wang X. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways. J Cell Mol Med. 2022;26(2):312-325. https://doi.org/10.1111/jcmm.17081
  22. Luan Y, Jin Y, Zhang P, Li H, Yang Y. Mitochondria-associated endoplasmic reticulum membranes and cardiac hypertrophy: Molecular mechanisms and therapeutic targets. Front Cardiovasc Med. 2022;9:1015722. https://doi.org/10.3389/fcvm.2022.1015722
  23. Arrigo M, Jessup M, Mullens W, Reza N, Shah AM, Sliwa K, Mebazaa A. Acute heart failure. Nat Rev Dis Primers. 2020;6(1):16. https://doi.org/10.1038/s41572-020-0151-7
  24. Olmos C, San Román JA, Sitges M, Forteza A, Rodríguez JF, Castillo FJ, et al. Selección de lo mejor del año 2021 en valvulopatías. CardioClinics. 2022;57(s1):S48-S53.
  25. Arciniega AL, Prieto JS, Mora LM, Córdoba N. Valvulopatías y Covid 19. Scientific & Education Medical Journal. 2022;6(2):03-114.
  26. Morciano G, Patergnani S, Pedriali G, Cimaglia P, Mikus E, Calvi S, et al. Impairment of mitophagy and autophagy accompanies calcific aortic valve stenosis favouring cell death and the severity of disease. Cardiovasc Res. 2022;118(11):2548–2559. https://doi.org/10.1093/cvr/cvab267
  27. Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res. 2022;118(6):1433-1451. https://doi.org/10.1093/cvr/cvab142
  28. Carracedo M, Persson O, Saliba-Gustafsson P, Artiach G, Ehrenborg E, Eriksson P, et al. Upregulated Autophagy in Calcific Aortic Valve Stenosis Confers Protection of Valvular Interstitial Cells. International journal of molecular sciences. 2019;20(6):1486. https://doi.org/10.3390/ijms20061486
  29. Henry GE, Ducuara-Tovar CH, Duany-Diaz T, Valdés-Martín A, Gonzalez-Gonzalez L, López-Pineiro Y. Estenosis Valvular Aortica. Revista Cubana de Cardiología y Cirugía Cardiovascular. 2018;24(1).
  30. Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S, et al. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: Energy Substrate Alternate as a Potential Therapeutic Intervention. Cells. 2022;11(18):2915. https://doi.org/10.3390/cells11182915
  31. Cascos E, Sitges M. Insuficiencia mitral: magnitud del problema y opciones de mejora. Cirugía Cardiovascular. 2022;29:S26-S31. https://doi.org/10.1016/j.circv.2022.02.003
  32. Corporan D, Segura A, Padala M. Ultrastructural Adaptation of the Cardiomyocyte to Chronic Mitral Regurgitation. Front Cardiovasc Med. 2021;8:714774. https://doi.org/10.3389/fcvm.2021.714774
  33. Kanaan GN, Patten DA, Redpath CJ, Harper ME. Atrial Fibrillation Is Associated With Impaired Atrial Mitochondrial Energetics and Supercomplex Formation in Adults With Type 2 Diabetes. Can J Diabetes. 2019;43(1):67-75.e1. https://doi.org/10.1016/j.jcjd.2018.05.007
  34. Huizar JF, Ellenbogen KA, Tan AY, Kaszala K. Arrhythmia-Induced Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(18):2328-2344. https://doi.org/10.1016/j.jacc.2019.02.045
  35. Gambardella J, Sorriento D, Ciccarelli M, Del Giudice C, Fiordelisi A, Napolitano L, et al. Functional Role of Mitochondria in Arrhythmogenesis. Adv Exp Med Biol. 2017;982:191-202. https://doi.org/10.1007/978-3-319-55330-6_10
  36. Hamilton S, Terentyeva R, Clements RT, Belevych AE, Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J Mol Cell Cardiol. 2021;156:105-113. https://doi.org/10.1016/j.yjmcc.2021.04.002
  37. Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res Cardiol. 2020;115(6):72. https://doi.org/10.1007/s00395-020-00827-7
  38. Pool L, Wijdeveld LFJM, de Groot NMS, Brundel BJJM. The Role of Mitochondrial Dysfunction in Atrial Fibrillation: Translation to Druggable Target and Biomarker Discovery. International Journal of Molecular Sciences. 2021;22(16):8463. https://doi.org/10.3390/ijms22168463
  39. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circ Res. 2019;124(11):1598-1617. https://doi.org/10.1161/CIRCRESAHA.119.313572
  40. Salvador-Casabón JM, Grados-Saso D, Lacambra-Blasco I, Giménez-López I, Pérez-Calvo JI. Prognostic value of early reassessment of reduced ejection fraction in acute heart failure. Rev Clin Esp (Barc). 2022;S2254-8874(22):00106-0. https://doi.org/10.1016/j.rceng.2022.10.006
  41. Dobson LE, Prendergast BD. Heart valve disease: a journey of discovery. Heart. 2022;108(10):774-779. https://doi.org/10.1136/heartjnl-2021-320146
  42. Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol. 2020;17(11):732-747. https://doi.org/10.1038/s41569-020-0394-8
  43. Han B, Trew ML, Zgierski-Johnston CM. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis. Cells. 2021;10(11):2923. https://doi.org/10.3390/cells10112923
Sistema OJS 3.4.0.5 - Metabiblioteca |