Skip to main navigation menu Skip to main content Skip to site footer

Phospholipases A2: Large families and mechanisms of action

Fosfolipasas A2: Grandes familias y mecanismos de acción




Section
Review Articles

How to Cite
García, G. A., & García Cardona, A. (2009). Phospholipases A2: Large families and mechanisms of action. Journal of Medicine and Surgery Repertoire, 18(4), 199-209. https://doi.org/10.31260/RepertMedCir.v18.n4.2009.555

Dimensions
PlumX
license

   

Gregory Alfonso García
    Ananías García Cardona

      Phospholipases A2 (PLA2) constitute a diverse group of enzymes with respect to sequence, function, location and requirement by divalent cations. They play an important role in a variety of cellular processes, including the digestion and metabolism of phospholipids, as well as the production of precursors for inflammatory reactions. These enzymes catalyze the hydrolysis of sn-2 position of membrane glycerophospholipids to release arachidonic acid (AA), a precursor of eicosanoids. The same reaction also produces lysophospholipids, which represent another class of lipid mediators. In addition, several surface receptors have been identified, such as PLA2R1. We will review the current knowledge of the properties and functions of this ubiquitous and diverse family group and the recent evidence of the fundamental activity that PLA2 plays in the pathobiological field. Abbreviations: PLA2, phospholipases A2.


      Article visits 11827 | PDF visits 2538


      Downloads

      Download data is not yet available.

      1. García GA, Gaitán AA, García Cardona A, Clavijo D, Mejía ÓR, Cobos Claudia et al. Aspectos biomédicos de las fosfolipasas A2 en la especie humana. Med UNAB. 2008; 11(1): 14-27.

      2. IUPAC, IUBMB, [BASE DE DATOS EN INTERNET]. LONDON: INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY; 1977, [FECHA DE ACCESO 20 DE ABRIL DEL 2009]. DISPONIBLE EN: http://www.chem.qmul.ac.uk/iupac/jcbn/index.html#2.

      3. OMIM [base de datos en Internet]. Baltimore: Johns Hopkins University; 1966, [fecha de acceso 20 de abril del 2009]. Disponible en: http://www.ncbi.nlm.nih.gov/entrez/dispomim.

      4. HUGO [base de datos en Internet]. Bethesda: National Library of Medicine and others (exp.: Celera Genomics and the Sanger Center); 1989, [fecha de acceso 20 de abril del 2009]. Disponible en: http://www.hugo-international.org/index.html.

      5. Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006; 1761(11): 1246-59.

      6. Ghosh M, Tucker DE, Burchett SA, Leslie CC. Properties of the Group IV phospholipase A2 family. Prog Lipid Res. 2006; 45(6): 487-10.

      7. Shimizu T, Ohto T, Kita Y. Cytosolic phospholipase A2: biochemical properties and physiological roles. IUBMB Life. 2006; 58(5-6): 328-33.

      8. Grewal S, Herbert SP, Ponnambalam S, Walker JH. Cytosolic phospholipase A2-alpha and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926 endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J. 2005; 272(5): 1278-90.

      9. Bailleux A, Wendum D, Audubert F, Jouniaux AM, Koumanov K, Trugnan G et al. Cytosolic phospholipase A2-p11 interaction controls arachidonic acid release as a function of epithelial cell confluence. Biochem J. 2004; 378(Pt 2): 307-15.

      10. Parente L, Solito E. Annexin 1: more than an anti-phospholipase protein. Inflamm Res. 2004; 53(4): 125-32.

      11. Sheridan AM, Force T, Yoon HJ, O’Leary E, Choukroun G, Taheri MR et al. PLIP, a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A(2), induces apoptosis, and potentiates prostaglandin production. Mol Cell Biol. 2001; 21(14): 4470-81.

      12. Mariggiò S, Bavec A, Natale E, Zizza P, Salmona M, Corda D et al. Galpha13 mediates activation of the cytosolic phospholipase A2alpha through fine regulation of ERK phosphorylation. Cell Signal. 2006; 18(12): 2200-08.

      13. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 2004; 13(6): 1435-48.

      14. Li J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry. 2006; 45(51): 15168-78.

      15. Akiba S, Sato T. Cellular function of calcium-independent phospholipase A2. Biol Pharm Bull. 2004; 27(8): 1174-78.

      16. Murakami M, Kudo I. Secretory phospholipase A2. Biol Pharm Bull. 2004; 27(8): 1158-1164.

      17. Fransson LA. Glypicans. Int J Biochem Cell Biol. 2003; 35(2): 125-29.

      18. Fransson LA, Belting M, Cheng F, Jönsson M, Mani K, Sandgren S. Novel aspects of glypican glycobiology. Cell Mol Life Sci. 2004; 61(6): 1016-24.

      19. Arai H. Platelet-activating factor acetylhydrolase. Prostaglandins Other Lipid Mediat. 2002; 68-69: 83-94.

      20. Karasawa K, Harada A, Satoh N, Inoue K, Setaka M. Plasma platelet activating factor-acetylhydrolase (PAF-AH). Prog Lipid Res. 2003; 42(2): 93-14.

      21. Cook JA. Eicosanoids. Crit Care Med. 2005; 33(12 Suppl): S488-91.

      22. Khanapure SP, Garvey DS, Janero DR, Letts LG. Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem. 2007; 7(3): 311-40.

      23. Chiang N, Serhan CN. Cell-cell interaction in the transcellular biosynthesis of novel omega-3-derived lipid mediators. Methods Mol Biol. 2006; 341: 227-50.

      24. Serhan CN. Novel chemical mediators in the resolution of inflammation: resolvins and protectins. Anesthesiol Clin. 2006; 24(2): 341-64.

      25. Kuhn H, O’Donnell VB. Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res. 2006; 45(4): 334-56.

      26. Smita K, Sushil Kumar V, Premendran JS. Anandamide: an update. Fundam Clin Pharmacol 2007; 21(1): 1-8.

      27. Stafforini DM, McIntyre TM, Zimmerman, GA Prescott SM. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Clin Lab Sci. 2003; 40(6): 643-72.

      28. Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res. 2004; 43(1): 55-90.

      29. Elbekai RH, El-Kadi AO. Cytochrome P450 enzymes: central players in cardiovascular health and disease. Pharmacol Ther. 2006; 112(2): 564-87.

      30. Van Der Stelt M, Di Marzo V. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem. 2004; 271(10): 1827-34.

      31. Montuschi P, Barnes P, Roberts LJ 2nd. Insights into oxidative stress: the isoprostanes. Curr Med Chem. 2007; 14(6): 703-17.

      32. Milligan G, Stoddart LA, Brown AJ. G protein-coupled receptors for free fatty acids. Cell Signal. 2006; 18(9): 1360-65.

      33. Kostadinova R, Wahli W, Michalik L. PPARs in diseases: control mechanisms of inflammation. Curr Med Chem. 2005; 12(25): 2995-09.

      34. Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Ther. 2009; 23(1): 49-59.

      35. Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther. 2006; 110(3): 503-24.

      36. Muller CA, Autenrieth IB, Peschel A. Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci. 2005; 62(12): 1297-1307.

      37. Keshav S. Paneth cells: leukocyte-like mediators of innate immunity in the intestine. J Leukoc Biol. 2006; 80(3): 500-08.

      38. Beers SA, Buckland AG, Koduri RS, Cho W, Gelb MH, Wilton DC. The antibacterial properties of secreted phospholipases A2: a major physiological role for the group IIA enzyme that depends on the very high pI of the enzyme to allow penetration of the bacterial cell wall. J Biol Chem. 2002; 277(3): 1788-93.

      39. Nevalainen TJ, Graham GG, Scott KF. Antibacterial actions of secreted phospholipases A2. Biochim Biophys Acta. 2008; 1781(1- 2): 1-9.

      40. Diaz BL, Satake Y, Kikawada E, Balestrieri B, Arm JP. Group V secretory phospholipase A2 amplifies the induction of cyclooxygenase 2 and delayed prostaglandin D2 generation in mouse bone marrow culture-derived mast cells in a strain-dependent manner. Biochim Biophys Acta. 2006; 1761(12): 1489-97.

      41. Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, Grusby MJ et al. Role of group V phospholipase A2 in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption. J Biol Chem. 2004; 279(16): 16488-94.

      42. Mitsuishi M, Masuda S, Kudo I, Murakami M. Group V and X secretory phospholipase A2 prevents adenoviral infection in mammalian cells. Biochem J. 2006; 393(Pt1): 97-106.

      43. Kim JO, Chakrabarti BK, Guha-Niyogi A, Louder MK, Mascola JR, Ganesh L, et al. Lysis of human immunodeficiency virus type 1 by a specific secreted human phospholipase A2. J Virol. 2007; 810028(3): 1444-50.

      44. Zhu J, Massey JB, Mitchell-Leef D, Elsner CW, Kort HI, Roudebush WE. Platelet-activating factor acetylhydrolase activity affects sperm motility and serves as a decapacitation factor. Fertil Steril. 2006; 85(2): 391-94.

      45. Wang H, Xie H, Dey SK. Endocannabinoid signaling directs periimplantation events. AAPS J. 2006(2); 8: E425-432.

      46. Lappas M, Rice GE. Phospholipase A2 isozymes in pregnancy and parturition. Prostaglandins Leukot Essent Fatty Acids. 2004; 70(2): 87-100.

      47. Burke JR. Targeting phospholipase A2 for the treatment of inflammatory skin diseases. Curr Opin Investig Drugs. 2001; 2(11): 1549-1552.

      48. Maury E, Julié S, Charvéron M, Gall Y, Chap H. Lipids and skin inflammation: role of phospholipases A2. Pathol Biol (Paris). 2003; 51(5): 248-52.

      49. Whitcomb DC, Lowe ME. Human pancreatic digestive enzymes. Dig Dis Sci 2007; 52(1): 1-17.

      50. Touqui L, Wu YZ. Interaction of secreted phospholipase A2 and pulmonary surfactant and its pathophysiological relevance in acute respiratory distress syndrome. Acta Pharmacol Sin 2003; 24(12): 1292-96.

      51. Mounier CM, Bon C, Kini RM. Anticoagulant venom and mammalian secreted phospholipases A(2): protein- versus phospholipid-dependent mechanism of action. Haemostasis. 2001; 31(3-6): 279-87.

      52. Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006; 397: 377-87.

      53. Matsuzawa A, Hattori K, Aoki J, Arai H, Inoue K. Protection against oxidative stress-induced cell death by intracellular plateletactivating factor-acetylhydrolase II. J Biol Chem. 1997; 272(51): 32315-20.

      54. Marques M, Pei Y, Southall MD, Johnston JM, Arai H, Aoki J, et al. Identification of platelet-activating factor acetylhydrolase II in human skin. J Invest Dermatol. 2002; 119: 913-9.

      55. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM. Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem. 2003; 278(14): 11909-15.

      56. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM. A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol. 2004; 6: 113-20.

      57. Bolotina VM, Csutora P. CIF and other mysteries of the storeoperated Ca2+-entry pathway. Trends Biochem Sci. 2005; 30: 378-87.

      58. Cheng KT, Liu X, Ong HL, Ambudkar IS. Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem. 2008; 283(19): 12935-40.

      59. Balsinde J, Balboa MA. Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell Signal. 2005; 17: 1052-62.

      60. Yang J, Han X, Gross RW. Identification of hepatic peroxisomal phospholipase A(2) and characterization of arachidonic acidcontaining choline glycerophospholipids in hepatic peroxisomes. FEBS Lett. 2003; 546: 247-50.

      61. Peterson B, Knotts T, Cummings BS. Involvement of Ca2+-independent phospholipase A2 isoforms in oxidant-induced neural cell death. Neurotoxicology. 2007; 28: 150-60.

      62. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007; 27: 79-101.

      63. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 2007; 293: G1-4.

      Sistema OJS 3.4.0.5 - Metabiblioteca |