Leptina, obesidad y enfermedades cardiovasculares

Leptin, obesity and cardiovascular diseases

Contenido principal del artículo

Andreina Fernández-Ramírez
Eduardo Reyna-Villasmil

Resumen

La obesidad está asociada con el síndrome metabólico, la hipertensión, la aterosclerosis y las enfermedades del corazón. El tejido adiposo funciona como un órgano endocrino al secretar múltiples proteínas inmunomoduladoras conocidas como adipocinas, que pueden actuar en forma directa sobre órganos cercanos o remotos. La búsqueda de las funciones de las diferentes adipocinas ha permitido establecer la relación entre obesidad y enfermedades cardiovasculares. La primera conduce a mayor expresión de algunas adipocinas proinflamatorias y disminución de otras antiinflamatorias, dando como resultado el desarrollo de un estado inflamatorio crónico de bajo grado. Algunas adipocinas disminuyen su expresión en sujetos obesos. Sin embargo, la leptina la aumenta en obesidad y promueve complicaciones relacionadas con esta. Estudios clínicos y experimentales indican que la leptina contribuye al desarrollo de cardiopatía isquémica y ejerce acciones perniciosas en las enfermedades cardiovasculares relacionadas con la obesidad.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

Jorly Mejia-Montilla , La Universidad del Zulia

Docente de Nutrición Humana, Escuela de Nutrición y Dietética, Facultad de Medicina, La Universidad del Zulia. Maracaibo. Estado Zulia. Venezuela

Nadia Reyna-Villasmil, La Universidad del Zulia

Docente de Bioquímica, Escuela de Nutrición, Facultad de Medicina, La Universidad del Zulia, Maracaibo. Estado Zulia, Venezuela

Andreina Fernández-Ramírez, Fundación Universitaria de Ciencias de la Salud

Docente de Bioquímica, Escuela de Nutrición, Facultad de Medicina, La Universidad del Zulia, Maracaibo. Estado Zulia, Venezuela.

Referencias

Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in Immunometabolism. Front Immunol. 2018;9:2509. doi: 10.3389/fimmu.2018.02509. DOI: https://doi.org/10.3389/fimmu.2018.02509

Ryan VH, German AJ, Wood IS, Hunter L, Morris P, Trayhurn P. Adipokine expression and secretion by canine adipocytes: stimulation of inflammatory adipokine production by LPS and TNFalpha. Pflugers Arch. 2010;460(3):603-16. doi: 10.1007/s00424-010-0845-x. DOI: https://doi.org/10.1007/s00424-010-0845-x

Kang YM, Kim F, Lee WJ. Role of NO/VASP Signaling Pathway against Obesity-Related Inflammation and Insulin Resistance. Diabetes Metab J. 2017;41(2):89-95. doi: 10.4093/dmj.2017.41.2.89. DOI: https://doi.org/10.4093/dmj.2017.41.2.89

Blüher M. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clin Sci (Lond). 2016;130(18):1603-14. doi: 10.1042/CS20160005. DOI: https://doi.org/10.1042/CS20160005

Ruggiero AD, Key CC, Kavanagh K. Adipose Tissue Macrophage Polarization in Healthy and Unhealthy Obesity. Front Nutr. 2021;8:625331. doi: 10.3389/fnut.2021.625331. DOI: https://doi.org/10.3389/fnut.2021.625331

Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol. 2021;9:672935. doi: 10.3389/fcell.2021.672935. DOI: https://doi.org/10.3389/fcell.2021.672935

Dhandapany PS, Kang S, Kashyap DK, Rajagopal R, Sundaresan NR, Singh R, Thangaraj K, Jayaprakash S, Manjunath CN, Shenthar J, Lebeche D. Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. Sci Adv. 2021;7(2):eabb3991. doi: 10.1126/sciadv.abb3991. DOI: https://doi.org/10.1126/sciadv.abb3991

Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094-101. doi: 10.1172/JCI45887. DOI: https://doi.org/10.1172/JCI45887

Wu C, Yu P, Sun R. Adipose tissue and age‑dependent insulin resistance: New insights into WAT browning (Review). Int J Mol Med. 2021;47(5):71. doi: 10.3892/ijmm.2021.4904. DOI: https://doi.org/10.3892/ijmm.2021.4904

Lindhorst A, Raulien N, Wieghofer P, Eilers J, Rossi FMV, Bechmann I, Gericke M. Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. Cell Death Dis. 2021;12(6):579. doi: 10.1038/s41419-021-03872-9. DOI: https://doi.org/10.1038/s41419-021-03872-9

Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910-8. doi: 10.2337/db07-0767. DOI: https://doi.org/10.2337/db07-0767

Mitchell CS, Premaratna SD, Bennett G, Lambrou M, Stahl LA, Jois M, Barber E, Antoniadis CP, Woods SC, Cameron-Smith D, Weisinger RS, Begg DP. Inhibition of the Renin-Angiotensin System Reduces Gene Expression of Inflammatory Mediators in Adipose Tissue Independent of Energy Balance. Front Endocrinol (Lausanne). 2021;12:682726. doi: 10.3389/fendo.2021.682726. DOI: https://doi.org/10.3389/fendo.2021.682726

Chen LW, Chen PH, Yen JH. Inhibiting adipose tissue M1 cytokine expression decreases DPP4 activity and insulin resistance in a type 2 diabetes mellitus mouse model. PLoS One. 2021;16(5):e0252153. doi: 10.1371/journal.pone.0252153. DOI: https://doi.org/10.1371/journal.pone.0252153

Geng Y, Hardie J, Landis RF, Mas-Rosario JA, Chattopadhyay AN, Keshri P, Sun J, Rizzo EM, Gopalakrishnan S, Farkas ME, Rotello VM. High-content and high-throughput identification of macrophage polarization phenotypes. Chem Sci. 2020;11(31):8231-8239. doi: 10.1039/d0sc02792h. DOI: https://doi.org/10.1039/D0SC02792H

McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41(1):36-48. doi: 10.1016/j.immuni.2014.05.010. DOI: https://doi.org/10.1016/j.immuni.2014.05.010

Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular Risk Factors and Differential Transcriptomic Profile of the Subcutaneous and Visceral Adipose Tissue and Their Resident Stem Cells. Cells. 2020;9(10):2235. doi: 10.3390/cells9102235. DOI: https://doi.org/10.3390/cells9102235

Cai R, Hao Y, Liu YY, Huang L, Yao Y, Zhou MS. Tumor Necrosis Factor Alpha Deficiency Improves Endothelial Function and Cardiovascular Injury in Deoxycorticosterone Acetate/Salt-Hypertensive Mice. Biomed Res Int. 2020;2020:3921074. doi: 10.1155/2020/3921074. DOI: https://doi.org/10.1155/2020/3921074

Boly CA, Venhuizen M, Dekker NAM, Vonk ABA, Boer C, van den Brom CE. Comparison of Microcirculatory Perfusion in Obese and Non-Obese Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. J Clin Med. 2021;10(3):469. doi: 10.3390/jcm10030469. DOI: https://doi.org/10.3390/jcm10030469

Cifarelli V, Beeman SC, Smith GI, Yoshino J, Morozov D, Beals JW, Kayser BD, Watrous JD, Jain M, Patterson BW, Klein S. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Invest. 2020;130(12):6688-6699. doi: 10.1172/JCI141828. DOI: https://doi.org/10.1172/JCI141828

Van Hulten V, van Meijel RLJ, Goossens GH. The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Rev Endocr Metab Disord. 2021;22(2):471-483. doi: 10.1007/s11154-021-09654-0. DOI: https://doi.org/10.1007/s11154-021-09654-0

Nishimura S, Manabe I, Nagasaki M, Seo K, Yamashita H, Hosoya Y, Ohsugi M, Tobe K, Kadowaki T, Nagai R, Sugiura S. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest. 2008;118(2):710-21. doi: 10.1172/JCI33328. DOI: https://doi.org/10.1172/JCI33328

Boa BCS, Yudkin JS, van Hinsbergh VWM, Bouskela E, Eringa EC. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. Br J Pharmacol. 2017;174(20):3466-3481. doi: 10.1111/bph.13732. DOI: https://doi.org/10.1111/bph.13732

Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci (Lond). 2012;122(1):1-12. doi: 10.1042/CS20110151. DOI: https://doi.org/10.1042/CS20110151

Man AWC, Zhou Y, Xia N, Li H. Perivascular Adipose Tissue as a Target for Antioxidant Therapy for Cardiovascular Complications. Antioxidants (Basel). 2020;9(7):574. doi: 10.3390/antiox9070574. DOI: https://doi.org/10.3390/antiox9070574

Gao YJ, Zeng ZH, Teoh K, Sharma AM, Abouzahr L, Cybulsky I, Lamy A, Semelhago L, Lee RM. Perivascular adipose tissue modulates vascular function in the human internal thoracic artery. J Thorac Cardiovasc Surg. 2005;130(4):1130-6. doi: 10.1016/j.jtcvs.2005.05.028. DOI: https://doi.org/10.1016/j.jtcvs.2005.05.028

Riddle MA, Hughes JM, Walker BR. Role of caveolin-1 in endothelial BKCa channel regulation of vasoreactivity. Am J Physiol Cell Physiol. 2011;301(6):C1404-14. doi: 10.1152/ajpcell.00013.2011. DOI: https://doi.org/10.1152/ajpcell.00013.2011

Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, Pemberton PW, Ammori B, Malik RA, Soran H, Heagerty AM. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62(2):128-135. doi: 10.1016/j.jacc.2013.04.027. DOI: https://doi.org/10.1016/S0140-6736(13)60458-4

Chang L, Garcia-Barrio MT, Chen YE. Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2020;40(5):1094-1109. doi: 10.1161/ATVBAHA.120.312464. DOI: https://doi.org/10.1161/ATVBAHA.120.312464

Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370-80. doi: 10.1093/cvr/cvn288. DOI: https://doi.org/10.1093/cvr/cvn288

Rios FJ, Moustaïd-Moussa N, Martins JO. Interplay between Hormones, the Immune System, and Metabolic Disorders. Mediators Inflamm. 2018;2018:8654212. doi: 10.1155/2018/8654212. DOI: https://doi.org/10.1155/2018/8654212

McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci (Lond). 2015;129(12):1083-96. doi: 10.1042/CS20150431 DOI: https://doi.org/10.1042/CS20150431

Tamakoshi K, Yatsuya H, Kondo T, Ishikawa M, Zhang H, Murata C, Otsuka R, Mabuchi T, Hori Y, Zhu S, Yoshida T, Toyoshima H. Long-term body weight variability is associated with elevated C-reactive protein independent of current body mass index among Japanese men. Int J Obes Relat Metab Disord. 2003;27(9):1059-65. doi: 10.1038/sj.ijo.0802386. DOI: https://doi.org/10.1038/sj.ijo.0802386

Néri AK, da S Junior GB, Meneses GC, Martins AM, F Daher E, da C Lino DO, Silva RP, Psf Nunes M, Alencar RL, Rodrigues MS, Saraiva IP. Cardiovascular risk assessment and association with novel biomarkers in patients with Type 2 diabetes mellitus. Biomark Med. 2021;15(8):561-576. doi: 10.2217/bmm-2020-0611. DOI: https://doi.org/10.2217/bmm-2020-0611

Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799-804. doi: 10.1001/jama.289.14.1799. DOI: https://doi.org/10.1001/jama.289.14.1799

Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in Prediabetes and Type 2 Diabetes: A Meta-Analysis. Front Immunol. 2021;12:622438. doi: 10.3389/fimmu.2021.622438. DOI: https://doi.org/10.3389/fimmu.2021.622438

Zhang M, Li F, Ma XF, Li WT, Jiang RR, Han RL, Li GX, Wang YB, Li ZY, Tian YD, Kang XT, Sun GR. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics. 2019;20(1):743. doi: 10.1186/s12864-019-6116-0. DOI: https://doi.org/10.1186/s12864-019-6116-0

Cheng CK, Bakar HA, Gollasch M, Huang Y. Perivascular Adipose Tissue: the Sixth Man of the Cardiovascular System. Cardiovasc Drugs Ther. 2018;32(5):481-502. doi: 10.1007/s10557-018-6820-z. DOI: https://doi.org/10.1007/s10557-018-6820-z

Ahmed B, Si H. The Aging of Adipocytes Increases Expression of Pro-Inflammatory Cytokines Chronologically. Metabolites. 2021;11(5):292. doi: 10.3390/metabo11050292 DOI: https://doi.org/10.3390/metabo11050292

Peek V, Neumann E, Inoue T, Koenig S, Pflieger FJ, Gerstberger R, Roth J, Matsumura K, Rummel C. Age-Dependent Changes of Adipokine and Cytokine Secretion From Rat Adipose Tissue by Endogenous and Exogenous Toll-Like Receptor Agonists. Front Immunol. 2020;11:1800. doi: 10.3389/fimmu.2020.01800. DOI: https://doi.org/10.3389/fimmu.2020.01800

Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab. 2014;25(7):348-55. doi: 10.1016/j.tem.2014.03.009. DOI: https://doi.org/10.1016/j.tem.2014.03.009

Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Nagasawa A, Kobayashi H, Hiraoka H, Komai N, Kaibe M, Rakugi H, Ogihara T, Matsuzawa Y. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003;42(3):231-4. doi: 10.1161/01.HYP.0000083488.67550.B8. DOI: https://doi.org/10.1161/01.HYP.0000083488.67550.B8

Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009-1023. doi: 10.1093/cvr/cvx108. DOI: https://doi.org/10.1093/cvr/cvx108

Hara T, Sato A, Yamamoto C, Kaji T. Syndecan-1 downregulates syndecan-4 expression by suppressing the ERK1/2 and p38 MAPK signaling pathways in cultured vascular endothelial cells. Biochem Biophys Rep. 2021;26:101001. doi: 10.1016/j.bbrep.2021.101001. DOI: https://doi.org/10.1016/j.bbrep.2021.101001

Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 2021;12:585887. doi: 10.3389/fendo.2021.585887. DOI: https://doi.org/10.3389/fendo.2021.585887

Bolze F, Morath V, Bast A, Rink N, Schlapschy M, Mocek S, Skerra A, Klingenspor M. Long-Acting PASylated Leptin Ameliorates Obesity by Promoting Satiety and Preventing Hypometabolism in Leptin-Deficient Lep(ob/ob) Mice. Endocrinology. 2016;157(1):233-44. doi: 10.1210/en.2015-1519. DOI: https://doi.org/10.1210/en.2015-1519

Tanaka S, Isoda F, Kiuchi Y, Ikeda H, Mobbs CV, Yamakawa T. T lymphopenia in genetically obese-diabetic Wistar fatty rats: effects of body weight reduction on T cells. Metabolism. 2000;49(10):1261-6. doi: 10.1053/meta.2000.9516. DOI: https://doi.org/10.1053/meta.2000.9516

Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Leptin enhances CC-chemokine ligand expression in cultured murine macrophage. Biochem Biophys Res Commun. 2009;384(3):311-5. doi: 10.1016/j.bbrc.2009.04.121. DOI: https://doi.org/10.1016/j.bbrc.2009.04.121

Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis. 2017;27(5):379-395. doi: 10.1016/j.numecd.2016.12.005. DOI: https://doi.org/10.1016/j.numecd.2016.12.005

Matarese G. Leptin and the immune system: how nutritional status influences the immune response. Eur Cytokine Netw. 2000;11(1):7-14.

La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51-58. doi: 10.1016/j.cyto.2016.10.011. DOI: https://doi.org/10.1016/j.cyto.2016.10.011

Philbrick KA, Wong CP, Branscum AJ, Turner RT, Iwaniec UT. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol. 2017;232(3):461-474. doi: 10.1530/JOE-16-0484. DOI: https://doi.org/10.1530/JOE-16-0484

Wauman J, Tavernier J. Leptin receptor signaling: pathways to leptin resistance. Front Biosci (Landmark Ed). 2011;16:2771-93. doi: 10.2741/3885. DOI: https://doi.org/10.2741/3885

Viollet B, Mounier R, Leclerc J, Yazigi A, Foretz M, Andreelli F. Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabetes Metab. 2007;33(6):395-402. doi: 10.1016/j.diabet.2007.10.004. DOI: https://doi.org/10.1016/j.diabet.2007.10.004

Uddin S, Hussain AR, Khan OS, Al-Kuraya KS. Role of dysregulated expression of leptin and leptin receptors in colorectal carcinogenesis. Tumour Biol. 2014;35(2):871-9. doi: 10.1007/s13277-013-1166-4. DOI: https://doi.org/10.1007/s13277-013-1166-4

Bell BB, Rahmouni K. Leptin as a Mediator of Obesity-Induced Hypertension. Curr Obes Rep. 2016;5(4):397-404. doi: 10.1007/s13679-016-0231-x. DOI: https://doi.org/10.1007/s13679-016-0231-x

Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol. 2021;9:673683. doi: 10.3389/fbioe.2021.673683. DOI: https://doi.org/10.3389/fbioe.2021.673683

Raman P, Khanal S. Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci. 2021;22(11):5446. doi: 10.3390/ijms22115446. DOI: https://doi.org/10.3390/ijms22115446

Xie D, Bollag WB. Obesity, hypertension and aldosterone: is leptin the link? J Endocrinol. 2016;230(1):F7-F11. doi: 10.1530/JOE-16-0160. DOI: https://doi.org/10.1530/JOE-16-0160

Jimenez-Munoz CM, López M, Albericio F, Makowski K. Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel). 2021;14(5):435. doi: 10.3390/ph14050435. DOI: https://doi.org/10.3390/ph14050435

Dunn SL, Björnholm M, Bates SH, Chen Z, Seifert M, Myers MG Jr. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol. 2005;19(4):925-38. doi: 10.1210/me.2004-0353 DOI: https://doi.org/10.1210/me.2004-0353

Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10(7):739-43. doi: 10.1038/nm1071. DOI: https://doi.org/10.1038/nm1071

Mao S, Fang L, Liu F, Jiang S, Wu L, Zhang J. Leptin and chronic kidney diseases. J Recept Signal Transduct Res. 2018;38(2):89-94. doi: 10.1080/10799893.2018.1431278. DOI: https://doi.org/10.1080/10799893.2018.1431278

Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice. Sleep. 2015;38(1):31-40. doi: 10.5665/sleep.4320. DOI: https://doi.org/10.5665/sleep.4320

Hubert A, Bochenek ML, Schütz E, Gogiraju R, Münzel T, Schäfer K. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice. Arterioscler Thromb Vasc Biol. 2017;37(9):1683-1697. doi: 10.1161/ATVBAHA.117.309798. DOI: https://doi.org/10.1161/ATVBAHA.117.309798

Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, Tranter M. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond). 2019;133(22):2329-2344. doi: 10.1042/CS20190578. DOI: https://doi.org/10.1042/CS20190578

Khanbabaei N, Mozafar Saadati H, Valizadeh Shahbazloo S, Hoseinpoor R, Naderi SH, Taghvamanesh R, Abolhasani S. Association of serum leptin with angiographically proven cardiovascular disease and with components of the metabolic syndrome: a cross-sectional study in East Azerbaijan. Cardiovasc Endocrinol Metab. 2020;10(1):45-50. doi: 10.1097/XCE.0000000000000227. DOI: https://doi.org/10.1097/XCE.0000000000000227

Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999;13(10):1231-8. DOI: https://doi.org/10.1096/fasebj.13.10.1231

Stringa N, Brahimaj A, Zaciragic A, Dehghan A, Ikram MA, Hofman A, Muka T, Kiefte-de Jong JC, Franco OH. Relation of antioxidant capacity of diet and markers of oxidative status with C-reactive protein and adipocytokines: a prospective study. Metabolism. 2017;71:171-181. doi: 10.1016/j.metabol.2017.03.015. DOI: https://doi.org/10.1016/j.metabol.2017.03.015

Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK. Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27(9):e302-7. doi: 10.1161/ATVBAHA.107.148353. DOI: https://doi.org/10.1161/ATVBAHA.107.148353

Paltoglou G, Schoina M, Valsamakis G, Salakos N, Avloniti A, Chatzinikolaou A, Margeli A, Skevaki C, Papagianni M, Kanaka-Gantenbein C, Papassotiriou I, Chrousos GP, Fatouros IG, Mastorakos G. Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine. 2017;55(3):925-933. doi: 10.1007/s12020-017-1227-3. DOI: https://doi.org/10.1007/s12020-017-1227-3

Kang KW, Ok M, Lee SK. Leptin as a Key between Obesity and Cardiovascular Disease. J Obes Metab Syndr. 2020;29(4):248-259. doi: 10.7570/jomes20120. DOI: https://doi.org/10.7570/jomes20120

Kanda T, Takahashi T, Kudo S, Takeda T, Tsugawa H, Takekoshi N. Leptin deficiency enhances myocardial necrosis and lethality in a murine model of viral myocarditis. Life Sci. 2004;75(12):1435-47. doi: 10.1016/j.lfs.2004.03.012. DOI: https://doi.org/10.1016/j.lfs.2004.03.012

McGaffin KR, Zou B, McTiernan CF, O'Donnell CP. Leptin attenuates cardiac apoptosis after chronic ischaemic injury. Cardiovasc Res. 2009;83(2):313-24. doi: 10.1093/cvr/cvp071. DOI: https://doi.org/10.1093/cvr/cvp071

Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol. 2005;25(8):1603-9. doi: 10.1161/01.ATV.0000171994.89106.ca. DOI: https://doi.org/10.1161/01.ATV.0000171994.89106.ca

Momin AU, Melikian N, Shah AM, Grieve DJ, Wheatcroft SB, John L, El Gamel A, Desai JB, Nelson T, Driver C, Sherwood RA, Kearney MT. Leptin is an endothelial-independent vasodilator in humans with coronary artery disease: Evidence for tissue specificity of leptin resistance. Eur Heart J. 2006;27(19):2294-9. doi: 10.1093/eurheartj/ehi831. DOI: https://doi.org/10.1093/eurheartj/ehi831

Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients. 2019;11(11):2664. doi: 10.3390/nu11112664. DOI: https://doi.org/10.3390/nu11112664

Matsuda K, Teragawa H, Fukuda Y, Nakagawa K, Higashi Y, Chayama K. Leptin causes nitric-oxide independent coronary artery vasodilation in humans. Hypertens Res. 2003;26(2):147-52. doi: 10.1291/hypres.26.147. DOI: https://doi.org/10.1291/hypres.26.147

Bassi M, Furuya WI, Zoccal DB, Menani JV, Colombari E, Hall JE, da Silva AA, do Carmo JM, Colombari DS. Control of respiratory and cardiovascular functions by leptin. Life Sci. 2015;125:25-31. doi: 10.1016/j.lfs.2015.01.019. DOI: https://doi.org/10.1016/j.lfs.2015.01.019

Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep. 2015;11(3):1555-65. doi: 10.3892/mmr.2014.2968. DOI: https://doi.org/10.3892/mmr.2014.2968

Giardullo L, Corrado A, Maruotti N, Cici D, Mansueto N, Cantatore FP. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211015034. doi: 10.1177/20587384211015034. DOI: https://doi.org/10.1177/20587384211015034

Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J. Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension. 2000;36(4):501-5. doi: 10.1161/01.hyp.36.4.501. DOI: https://doi.org/10.1161/01.HYP.36.4.501

Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93(4):277-9. doi: 10.1161/01.RES.0000089255.37804.72. DOI: https://doi.org/10.1161/01.RES.0000089255.37804.72

Jeong MH, Tran NK, Kwak TH, Park BK, Lee CS, Park TS, Lee YH, Park WJ, Yang DK. β-Lapachone ameliorates lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. PLoS One. 2014;9(3):e91039. doi: 10.1371/journal.pone.0091039. DOI: https://doi.org/10.1371/journal.pone.0091039

Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res. 2016;57(12):2099-2114. doi: 10.1194/jlr.R066514. DOI: https://doi.org/10.1194/jlr.R066514

Schram K, De Girolamo S, Madani S, Munoz D, Thong F, Sweeney G. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes. Cell Mol Biol Lett. 2010;15(4):551-63. doi: 10.2478/s11658-010-0027-z. DOI: https://doi.org/10.2478/s11658-010-0027-z

Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol. 2020;11:578966. doi: 10.3389/fphys.2020.578966. DOI: https://doi.org/10.3389/fphys.2020.578966

Andrienko T, Pasdois P, Rossbach A, Halestrap AP. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning. PLoS One. 2016;11(12):e0167300. doi: 10.1371/journal.pone.0167300. DOI: https://doi.org/10.1371/journal.pone.0167300

Zhao X, Zhang E, Ren X, Bai X, Wang D, Bai L, Luo D, Guo Z, Wang Q, Yang J. Edaravone alleviates cell apoptosis and mitochondrial injury in ischemia-reperfusion-induced kidney injury via the JAK/STAT pathway. Biol Res. 2020;53(1):28. doi: 10.1186/s40659-020-00297-0. DOI: https://doi.org/10.1186/s40659-020-00297-0

Citado por