Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Leptina, obesidad y enfermedades cardiovasculares

Leptin, obesity and cardiovascular diseases




Sección
Artículo de revisión

Cómo citar
Mejia-Montilla , J., Reyna-Villasmil, N., Fernández-Ramírez, A., & Reyna-Villasmil, E. (2023). Leptina, obesidad y enfermedades cardiovasculares. Revista Repertorio De Medicina Y Cirugía, 32(3), 218-227. https://doi.org/10.31260/RepertMedCir.01217372.1243

Dimensions
PlumX
Citaciones
Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Andreina Fernández-Ramírez

    Eduardo Reyna-Villasmil


      Jorly Mejia-Montilla ,

      Docente de Nutrición Humana, Escuela de Nutrición y Dietética, Facultad de Medicina, La Universidad del Zulia. Maracaibo. Estado Zulia. Venezuela


      Nadia Reyna-Villasmil,

      Docente de Bioquímica, Escuela de Nutrición, Facultad de Medicina, La Universidad del Zulia, Maracaibo. Estado Zulia, Venezuela


      Andreina Fernández-Ramírez,

      Docente de Bioquímica, Escuela de Nutrición, Facultad de Medicina, La Universidad del Zulia, Maracaibo. Estado Zulia, Venezuela.


      La obesidad está asociada con el síndrome metabólico, la hipertensión, la aterosclerosis y las enfermedades del corazón. El tejido adiposo funciona como un órgano endocrino al secretar múltiples proteínas inmunomoduladoras conocidas como adipocinas, que pueden actuar en forma directa sobre órganos cercanos o remotos. La búsqueda de las funciones de las diferentes adipocinas ha permitido establecer la relación entre obesidad y enfermedades cardiovasculares. La primera conduce a mayor expresión de algunas adipocinas proinflamatorias y disminución de otras antiinflamatorias, dando como resultado el desarrollo de un estado inflamatorio crónico de bajo grado. Algunas adipocinas disminuyen su expresión en sujetos obesos. Sin embargo, la leptina la aumenta en obesidad y promueve complicaciones relacionadas con esta. Estudios clínicos y experimentales indican que la leptina contribuye al desarrollo de cardiopatía isquémica y ejerce acciones perniciosas en las enfermedades cardiovasculares relacionadas con la obesidad.


      Visitas del artículo 1746 | Visitas PDF 1830


      Descargas

      Los datos de descarga todavía no están disponibles.
      1. Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in Immunometabolism. Front Immunol. 2018;9:2509. doi: 10.3389/fimmu.2018.02509. DOI: https://doi.org/10.3389/fimmu.2018.02509
      2. Ryan VH, German AJ, Wood IS, Hunter L, Morris P, Trayhurn P. Adipokine expression and secretion by canine adipocytes: stimulation of inflammatory adipokine production by LPS and TNFalpha. Pflugers Arch. 2010;460(3):603-16. doi: 10.1007/s00424-010-0845-x. DOI: https://doi.org/10.1007/s00424-010-0845-x
      3. Kang YM, Kim F, Lee WJ. Role of NO/VASP Signaling Pathway against Obesity-Related Inflammation and Insulin Resistance. Diabetes Metab J. 2017;41(2):89-95. doi: 10.4093/dmj.2017.41.2.89. DOI: https://doi.org/10.4093/dmj.2017.41.2.89
      4. Blüher M. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clin Sci (Lond). 2016;130(18):1603-14. doi: 10.1042/CS20160005. DOI: https://doi.org/10.1042/CS20160005
      5. Ruggiero AD, Key CC, Kavanagh K. Adipose Tissue Macrophage Polarization in Healthy and Unhealthy Obesity. Front Nutr. 2021;8:625331. doi: 10.3389/fnut.2021.625331. DOI: https://doi.org/10.3389/fnut.2021.625331
      6. Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol. 2021;9:672935. doi: 10.3389/fcell.2021.672935. DOI: https://doi.org/10.3389/fcell.2021.672935
      7. Dhandapany PS, Kang S, Kashyap DK, Rajagopal R, Sundaresan NR, Singh R, Thangaraj K, Jayaprakash S, Manjunath CN, Shenthar J, Lebeche D. Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. Sci Adv. 2021;7(2):eabb3991. doi: 10.1126/sciadv.abb3991. DOI: https://doi.org/10.1126/sciadv.abb3991
      8. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094-101. doi: 10.1172/JCI45887. DOI: https://doi.org/10.1172/JCI45887
      9. Wu C, Yu P, Sun R. Adipose tissue and age‑dependent insulin resistance: New insights into WAT browning (Review). Int J Mol Med. 2021;47(5):71. doi: 10.3892/ijmm.2021.4904. DOI: https://doi.org/10.3892/ijmm.2021.4904
      10. Lindhorst A, Raulien N, Wieghofer P, Eilers J, Rossi FMV, Bechmann I, Gericke M. Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. Cell Death Dis. 2021;12(6):579. doi: 10.1038/s41419-021-03872-9. DOI: https://doi.org/10.1038/s41419-021-03872-9
      11. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910-8. doi: 10.2337/db07-0767. DOI: https://doi.org/10.2337/db07-0767
      12. Mitchell CS, Premaratna SD, Bennett G, Lambrou M, Stahl LA, Jois M, Barber E, Antoniadis CP, Woods SC, Cameron-Smith D, Weisinger RS, Begg DP. Inhibition of the Renin-Angiotensin System Reduces Gene Expression of Inflammatory Mediators in Adipose Tissue Independent of Energy Balance. Front Endocrinol (Lausanne). 2021;12:682726. doi: 10.3389/fendo.2021.682726. DOI: https://doi.org/10.3389/fendo.2021.682726
      13. Chen LW, Chen PH, Yen JH. Inhibiting adipose tissue M1 cytokine expression decreases DPP4 activity and insulin resistance in a type 2 diabetes mellitus mouse model. PLoS One. 2021;16(5):e0252153. doi: 10.1371/journal.pone.0252153. DOI: https://doi.org/10.1371/journal.pone.0252153
      14. Geng Y, Hardie J, Landis RF, Mas-Rosario JA, Chattopadhyay AN, Keshri P, Sun J, Rizzo EM, Gopalakrishnan S, Farkas ME, Rotello VM. High-content and high-throughput identification of macrophage polarization phenotypes. Chem Sci. 2020;11(31):8231-8239. doi: 10.1039/d0sc02792h. DOI: https://doi.org/10.1039/D0SC02792H
      15. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41(1):36-48. doi: 10.1016/j.immuni.2014.05.010. DOI: https://doi.org/10.1016/j.immuni.2014.05.010
      16. Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular Risk Factors and Differential Transcriptomic Profile of the Subcutaneous and Visceral Adipose Tissue and Their Resident Stem Cells. Cells. 2020;9(10):2235. doi: 10.3390/cells9102235. DOI: https://doi.org/10.3390/cells9102235
      17. Cai R, Hao Y, Liu YY, Huang L, Yao Y, Zhou MS. Tumor Necrosis Factor Alpha Deficiency Improves Endothelial Function and Cardiovascular Injury in Deoxycorticosterone Acetate/Salt-Hypertensive Mice. Biomed Res Int. 2020;2020:3921074. doi: 10.1155/2020/3921074. DOI: https://doi.org/10.1155/2020/3921074
      18. Boly CA, Venhuizen M, Dekker NAM, Vonk ABA, Boer C, van den Brom CE. Comparison of Microcirculatory Perfusion in Obese and Non-Obese Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. J Clin Med. 2021;10(3):469. doi: 10.3390/jcm10030469. DOI: https://doi.org/10.3390/jcm10030469
      19. Cifarelli V, Beeman SC, Smith GI, Yoshino J, Morozov D, Beals JW, Kayser BD, Watrous JD, Jain M, Patterson BW, Klein S. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Invest. 2020;130(12):6688-6699. doi: 10.1172/JCI141828. DOI: https://doi.org/10.1172/JCI141828
      20. Van Hulten V, van Meijel RLJ, Goossens GH. The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Rev Endocr Metab Disord. 2021;22(2):471-483. doi: 10.1007/s11154-021-09654-0. DOI: https://doi.org/10.1007/s11154-021-09654-0
      21. Nishimura S, Manabe I, Nagasaki M, Seo K, Yamashita H, Hosoya Y, Ohsugi M, Tobe K, Kadowaki T, Nagai R, Sugiura S. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest. 2008;118(2):710-21. doi: 10.1172/JCI33328. DOI: https://doi.org/10.1172/JCI33328
      22. Boa BCS, Yudkin JS, van Hinsbergh VWM, Bouskela E, Eringa EC. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. Br J Pharmacol. 2017;174(20):3466-3481. doi: 10.1111/bph.13732. DOI: https://doi.org/10.1111/bph.13732
      23. Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci (Lond). 2012;122(1):1-12. doi: 10.1042/CS20110151. DOI: https://doi.org/10.1042/CS20110151
      24. Man AWC, Zhou Y, Xia N, Li H. Perivascular Adipose Tissue as a Target for Antioxidant Therapy for Cardiovascular Complications. Antioxidants (Basel). 2020;9(7):574. doi: 10.3390/antiox9070574. DOI: https://doi.org/10.3390/antiox9070574
      25. Gao YJ, Zeng ZH, Teoh K, Sharma AM, Abouzahr L, Cybulsky I, Lamy A, Semelhago L, Lee RM. Perivascular adipose tissue modulates vascular function in the human internal thoracic artery. J Thorac Cardiovasc Surg. 2005;130(4):1130-6. doi: 10.1016/j.jtcvs.2005.05.028. DOI: https://doi.org/10.1016/j.jtcvs.2005.05.028
      26. Riddle MA, Hughes JM, Walker BR. Role of caveolin-1 in endothelial BKCa channel regulation of vasoreactivity. Am J Physiol Cell Physiol. 2011;301(6):C1404-14. doi: 10.1152/ajpcell.00013.2011. DOI: https://doi.org/10.1152/ajpcell.00013.2011
      27. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, Pemberton PW, Ammori B, Malik RA, Soran H, Heagerty AM. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62(2):128-135. doi: 10.1016/j.jacc.2013.04.027. DOI: https://doi.org/10.1016/S0140-6736(13)60458-4
      28. Chang L, Garcia-Barrio MT, Chen YE. Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2020;40(5):1094-1109. doi: 10.1161/ATVBAHA.120.312464. DOI: https://doi.org/10.1161/ATVBAHA.120.312464
      29. Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370-80. doi: 10.1093/cvr/cvn288. DOI: https://doi.org/10.1093/cvr/cvn288
      30. Rios FJ, Moustaïd-Moussa N, Martins JO. Interplay between Hormones, the Immune System, and Metabolic Disorders. Mediators Inflamm. 2018;2018:8654212. doi: 10.1155/2018/8654212. DOI: https://doi.org/10.1155/2018/8654212
      31. McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci (Lond). 2015;129(12):1083-96. doi: 10.1042/CS20150431 DOI: https://doi.org/10.1042/CS20150431
      32. Tamakoshi K, Yatsuya H, Kondo T, Ishikawa M, Zhang H, Murata C, Otsuka R, Mabuchi T, Hori Y, Zhu S, Yoshida T, Toyoshima H. Long-term body weight variability is associated with elevated C-reactive protein independent of current body mass index among Japanese men. Int J Obes Relat Metab Disord. 2003;27(9):1059-65. doi: 10.1038/sj.ijo.0802386. DOI: https://doi.org/10.1038/sj.ijo.0802386
      33. Néri AK, da S Junior GB, Meneses GC, Martins AM, F Daher E, da C Lino DO, Silva RP, Psf Nunes M, Alencar RL, Rodrigues MS, Saraiva IP. Cardiovascular risk assessment and association with novel biomarkers in patients with Type 2 diabetes mellitus. Biomark Med. 2021;15(8):561-576. doi: 10.2217/bmm-2020-0611. DOI: https://doi.org/10.2217/bmm-2020-0611
      34. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799-804. doi: 10.1001/jama.289.14.1799. DOI: https://doi.org/10.1001/jama.289.14.1799
      35. Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in Prediabetes and Type 2 Diabetes: A Meta-Analysis. Front Immunol. 2021;12:622438. doi: 10.3389/fimmu.2021.622438. DOI: https://doi.org/10.3389/fimmu.2021.622438
      36. Zhang M, Li F, Ma XF, Li WT, Jiang RR, Han RL, Li GX, Wang YB, Li ZY, Tian YD, Kang XT, Sun GR. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics. 2019;20(1):743. doi: 10.1186/s12864-019-6116-0. DOI: https://doi.org/10.1186/s12864-019-6116-0
      37. Cheng CK, Bakar HA, Gollasch M, Huang Y. Perivascular Adipose Tissue: the Sixth Man of the Cardiovascular System. Cardiovasc Drugs Ther. 2018;32(5):481-502. doi: 10.1007/s10557-018-6820-z. DOI: https://doi.org/10.1007/s10557-018-6820-z
      38. Ahmed B, Si H. The Aging of Adipocytes Increases Expression of Pro-Inflammatory Cytokines Chronologically. Metabolites. 2021;11(5):292. doi: 10.3390/metabo11050292 DOI: https://doi.org/10.3390/metabo11050292
      39. Peek V, Neumann E, Inoue T, Koenig S, Pflieger FJ, Gerstberger R, Roth J, Matsumura K, Rummel C. Age-Dependent Changes of Adipokine and Cytokine Secretion From Rat Adipose Tissue by Endogenous and Exogenous Toll-Like Receptor Agonists. Front Immunol. 2020;11:1800. doi: 10.3389/fimmu.2020.01800. DOI: https://doi.org/10.3389/fimmu.2020.01800
      40. Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab. 2014;25(7):348-55. doi: 10.1016/j.tem.2014.03.009. DOI: https://doi.org/10.1016/j.tem.2014.03.009
      41. Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Nagasawa A, Kobayashi H, Hiraoka H, Komai N, Kaibe M, Rakugi H, Ogihara T, Matsuzawa Y. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003;42(3):231-4. doi: 10.1161/01.HYP.0000083488.67550.B8. DOI: https://doi.org/10.1161/01.HYP.0000083488.67550.B8
      42. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009-1023. doi: 10.1093/cvr/cvx108. DOI: https://doi.org/10.1093/cvr/cvx108
      43. Hara T, Sato A, Yamamoto C, Kaji T. Syndecan-1 downregulates syndecan-4 expression by suppressing the ERK1/2 and p38 MAPK signaling pathways in cultured vascular endothelial cells. Biochem Biophys Rep. 2021;26:101001. doi: 10.1016/j.bbrep.2021.101001. DOI: https://doi.org/10.1016/j.bbrep.2021.101001
      44. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 2021;12:585887. doi: 10.3389/fendo.2021.585887. DOI: https://doi.org/10.3389/fendo.2021.585887
      45. Bolze F, Morath V, Bast A, Rink N, Schlapschy M, Mocek S, Skerra A, Klingenspor M. Long-Acting PASylated Leptin Ameliorates Obesity by Promoting Satiety and Preventing Hypometabolism in Leptin-Deficient Lep(ob/ob) Mice. Endocrinology. 2016;157(1):233-44. doi: 10.1210/en.2015-1519. DOI: https://doi.org/10.1210/en.2015-1519
      46. Tanaka S, Isoda F, Kiuchi Y, Ikeda H, Mobbs CV, Yamakawa T. T lymphopenia in genetically obese-diabetic Wistar fatty rats: effects of body weight reduction on T cells. Metabolism. 2000;49(10):1261-6. doi: 10.1053/meta.2000.9516. DOI: https://doi.org/10.1053/meta.2000.9516
      47. Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Leptin enhances CC-chemokine ligand expression in cultured murine macrophage. Biochem Biophys Res Commun. 2009;384(3):311-5. doi: 10.1016/j.bbrc.2009.04.121. DOI: https://doi.org/10.1016/j.bbrc.2009.04.121
      48. Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis. 2017;27(5):379-395. doi: 10.1016/j.numecd.2016.12.005. DOI: https://doi.org/10.1016/j.numecd.2016.12.005
      49. Matarese G. Leptin and the immune system: how nutritional status influences the immune response. Eur Cytokine Netw. 2000;11(1):7-14.
      50. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51-58. doi: 10.1016/j.cyto.2016.10.011. DOI: https://doi.org/10.1016/j.cyto.2016.10.011
      51. Philbrick KA, Wong CP, Branscum AJ, Turner RT, Iwaniec UT. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol. 2017;232(3):461-474. doi: 10.1530/JOE-16-0484. DOI: https://doi.org/10.1530/JOE-16-0484
      52. Wauman J, Tavernier J. Leptin receptor signaling: pathways to leptin resistance. Front Biosci (Landmark Ed). 2011;16:2771-93. doi: 10.2741/3885. DOI: https://doi.org/10.2741/3885
      53. Viollet B, Mounier R, Leclerc J, Yazigi A, Foretz M, Andreelli F. Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabetes Metab. 2007;33(6):395-402. doi: 10.1016/j.diabet.2007.10.004. DOI: https://doi.org/10.1016/j.diabet.2007.10.004
      54. Uddin S, Hussain AR, Khan OS, Al-Kuraya KS. Role of dysregulated expression of leptin and leptin receptors in colorectal carcinogenesis. Tumour Biol. 2014;35(2):871-9. doi: 10.1007/s13277-013-1166-4. DOI: https://doi.org/10.1007/s13277-013-1166-4
      55. Bell BB, Rahmouni K. Leptin as a Mediator of Obesity-Induced Hypertension. Curr Obes Rep. 2016;5(4):397-404. doi: 10.1007/s13679-016-0231-x. DOI: https://doi.org/10.1007/s13679-016-0231-x
      56. Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol. 2021;9:673683. doi: 10.3389/fbioe.2021.673683. DOI: https://doi.org/10.3389/fbioe.2021.673683
      57. Raman P, Khanal S. Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci. 2021;22(11):5446. doi: 10.3390/ijms22115446. DOI: https://doi.org/10.3390/ijms22115446
      58. Xie D, Bollag WB. Obesity, hypertension and aldosterone: is leptin the link? J Endocrinol. 2016;230(1):F7-F11. doi: 10.1530/JOE-16-0160. DOI: https://doi.org/10.1530/JOE-16-0160
      59. Jimenez-Munoz CM, López M, Albericio F, Makowski K. Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel). 2021;14(5):435. doi: 10.3390/ph14050435. DOI: https://doi.org/10.3390/ph14050435
      60. Dunn SL, Björnholm M, Bates SH, Chen Z, Seifert M, Myers MG Jr. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol. 2005;19(4):925-38. doi: 10.1210/me.2004-0353 DOI: https://doi.org/10.1210/me.2004-0353
      61. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10(7):739-43. doi: 10.1038/nm1071. DOI: https://doi.org/10.1038/nm1071
      62. Mao S, Fang L, Liu F, Jiang S, Wu L, Zhang J. Leptin and chronic kidney diseases. J Recept Signal Transduct Res. 2018;38(2):89-94. doi: 10.1080/10799893.2018.1431278. DOI: https://doi.org/10.1080/10799893.2018.1431278
      63. Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice. Sleep. 2015;38(1):31-40. doi: 10.5665/sleep.4320. DOI: https://doi.org/10.5665/sleep.4320
      64. Hubert A, Bochenek ML, Schütz E, Gogiraju R, Münzel T, Schäfer K. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice. Arterioscler Thromb Vasc Biol. 2017;37(9):1683-1697. doi: 10.1161/ATVBAHA.117.309798. DOI: https://doi.org/10.1161/ATVBAHA.117.309798
      65. Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, Tranter M. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond). 2019;133(22):2329-2344. doi: 10.1042/CS20190578. DOI: https://doi.org/10.1042/CS20190578
      66. Khanbabaei N, Mozafar Saadati H, Valizadeh Shahbazloo S, Hoseinpoor R, Naderi SH, Taghvamanesh R, Abolhasani S. Association of serum leptin with angiographically proven cardiovascular disease and with components of the metabolic syndrome: a cross-sectional study in East Azerbaijan. Cardiovasc Endocrinol Metab. 2020;10(1):45-50. doi: 10.1097/XCE.0000000000000227. DOI: https://doi.org/10.1097/XCE.0000000000000227
      67. Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999;13(10):1231-8. DOI: https://doi.org/10.1096/fasebj.13.10.1231
      68. Stringa N, Brahimaj A, Zaciragic A, Dehghan A, Ikram MA, Hofman A, Muka T, Kiefte-de Jong JC, Franco OH. Relation of antioxidant capacity of diet and markers of oxidative status with C-reactive protein and adipocytokines: a prospective study. Metabolism. 2017;71:171-181. doi: 10.1016/j.metabol.2017.03.015. DOI: https://doi.org/10.1016/j.metabol.2017.03.015
      69. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK. Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27(9):e302-7. doi: 10.1161/ATVBAHA.107.148353. DOI: https://doi.org/10.1161/ATVBAHA.107.148353
      70. Paltoglou G, Schoina M, Valsamakis G, Salakos N, Avloniti A, Chatzinikolaou A, Margeli A, Skevaki C, Papagianni M, Kanaka-Gantenbein C, Papassotiriou I, Chrousos GP, Fatouros IG, Mastorakos G. Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine. 2017;55(3):925-933. doi: 10.1007/s12020-017-1227-3. DOI: https://doi.org/10.1007/s12020-017-1227-3
      71. Kang KW, Ok M, Lee SK. Leptin as a Key between Obesity and Cardiovascular Disease. J Obes Metab Syndr. 2020;29(4):248-259. doi: 10.7570/jomes20120. DOI: https://doi.org/10.7570/jomes20120
      72. Kanda T, Takahashi T, Kudo S, Takeda T, Tsugawa H, Takekoshi N. Leptin deficiency enhances myocardial necrosis and lethality in a murine model of viral myocarditis. Life Sci. 2004;75(12):1435-47. doi: 10.1016/j.lfs.2004.03.012. DOI: https://doi.org/10.1016/j.lfs.2004.03.012
      73. McGaffin KR, Zou B, McTiernan CF, O'Donnell CP. Leptin attenuates cardiac apoptosis after chronic ischaemic injury. Cardiovasc Res. 2009;83(2):313-24. doi: 10.1093/cvr/cvp071. DOI: https://doi.org/10.1093/cvr/cvp071
      74. Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol. 2005;25(8):1603-9. doi: 10.1161/01.ATV.0000171994.89106.ca. DOI: https://doi.org/10.1161/01.ATV.0000171994.89106.ca
      75. Momin AU, Melikian N, Shah AM, Grieve DJ, Wheatcroft SB, John L, El Gamel A, Desai JB, Nelson T, Driver C, Sherwood RA, Kearney MT. Leptin is an endothelial-independent vasodilator in humans with coronary artery disease: Evidence for tissue specificity of leptin resistance. Eur Heart J. 2006;27(19):2294-9. doi: 10.1093/eurheartj/ehi831. DOI: https://doi.org/10.1093/eurheartj/ehi831
      76. Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients. 2019;11(11):2664. doi: 10.3390/nu11112664. DOI: https://doi.org/10.3390/nu11112664
      77. Matsuda K, Teragawa H, Fukuda Y, Nakagawa K, Higashi Y, Chayama K. Leptin causes nitric-oxide independent coronary artery vasodilation in humans. Hypertens Res. 2003;26(2):147-52. doi: 10.1291/hypres.26.147. DOI: https://doi.org/10.1291/hypres.26.147
      78. Bassi M, Furuya WI, Zoccal DB, Menani JV, Colombari E, Hall JE, da Silva AA, do Carmo JM, Colombari DS. Control of respiratory and cardiovascular functions by leptin. Life Sci. 2015;125:25-31. doi: 10.1016/j.lfs.2015.01.019. DOI: https://doi.org/10.1016/j.lfs.2015.01.019
      79. Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep. 2015;11(3):1555-65. doi: 10.3892/mmr.2014.2968. DOI: https://doi.org/10.3892/mmr.2014.2968
      80. Giardullo L, Corrado A, Maruotti N, Cici D, Mansueto N, Cantatore FP. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211015034. doi: 10.1177/20587384211015034. DOI: https://doi.org/10.1177/20587384211015034
      81. Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J. Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension. 2000;36(4):501-5. doi: 10.1161/01.hyp.36.4.501. DOI: https://doi.org/10.1161/01.HYP.36.4.501
      82. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93(4):277-9. doi: 10.1161/01.RES.0000089255.37804.72. DOI: https://doi.org/10.1161/01.RES.0000089255.37804.72
      83. Jeong MH, Tran NK, Kwak TH, Park BK, Lee CS, Park TS, Lee YH, Park WJ, Yang DK. β-Lapachone ameliorates lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. PLoS One. 2014;9(3):e91039. doi: 10.1371/journal.pone.0091039. DOI: https://doi.org/10.1371/journal.pone.0091039
      84. Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res. 2016;57(12):2099-2114. doi: 10.1194/jlr.R066514. DOI: https://doi.org/10.1194/jlr.R066514
      85. Schram K, De Girolamo S, Madani S, Munoz D, Thong F, Sweeney G. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes. Cell Mol Biol Lett. 2010;15(4):551-63. doi: 10.2478/s11658-010-0027-z. DOI: https://doi.org/10.2478/s11658-010-0027-z
      86. Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol. 2020;11:578966. doi: 10.3389/fphys.2020.578966. DOI: https://doi.org/10.3389/fphys.2020.578966
      87. Andrienko T, Pasdois P, Rossbach A, Halestrap AP. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning. PLoS One. 2016;11(12):e0167300. doi: 10.1371/journal.pone.0167300. DOI: https://doi.org/10.1371/journal.pone.0167300
      88. Zhao X, Zhang E, Ren X, Bai X, Wang D, Bai L, Luo D, Guo Z, Wang Q, Yang J. Edaravone alleviates cell apoptosis and mitochondrial injury in ischemia-reperfusion-induced kidney injury via the JAK/STAT pathway. Biol Res. 2020;53(1):28. doi: 10.1186/s40659-020-00297-0. DOI: https://doi.org/10.1186/s40659-020-00297-0
      Sistema OJS 3.4.0.5 - Metabiblioteca |